Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 3 | 155--159
Tytuł artykułu

A deep analysis of CPW-fed planar antennas for frequencies 2.6 up to 13.6 GHz

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Dogłębna analiza anten planarnych zasilanych CPW pod kątem częstotliwości 2,6 Do 13,6 GHz
Języki publikacji
EN
Abstrakty
EN
This paper presents a deep analysis of coplanar waveguide (CPW) feed Planar antenna for frequencies from 2.6 GHz up to 13.6 GHz, which covers the authorised Ultra-wideband (UWB) from 3.1-10.6GHz and the X-band from 8-12GHz applications. The Parametric analysis will help the researchers understand antenna parameters' effects on the reflection coefficient (S11) variations. These important parameters are the length of the CPW fed (Cl), the width of the substrate (W), the width of the feed-line (Wf) and the gap between the feed-line and CPW disk (g). The total physical planar antenna dimension is 26 mm × 26mm × 1.6 mm, corresponding to the centre frequency range at 7.5 GHz. The UWB CPW planar antenna is fed via a coplanar waveguide (CPW) to attain the best impedance matching for UWB systems. The presented CPW planar antenna has an impedance UWB bandwidth of 11.0 GHz from 2.6 GHz up to 13.6 GHz at −10 dB return loss. The simulated UWB planar antenna displays an omnidirectional radiation behaviour with a simulated gain of 7.3 dB at 13.6 GHz, a directivity of 7.5 dBi at 13.6 GHz and favourable radiation efficiency of 97%. The presented antenna has the specialised prospect to be used for UWB and X-band systems.
PL
W artykule przedstawiono dogłębną analizę współpłaszczyznowej anteny falowodowej (CPW) zasilającej planarną antenę dla częstotliwości od 2,6 GHz do 13,6 GHz, która obejmuje autoryzowane aplikacje ultraszerokopasmowe (UWB) w zakresie 3,1-10,6 GHz oraz pasmo X w zakresie 8-12 GHz . Analiza parametryczna pomoże naukowcom zrozumieć wpływ parametrów anteny na zmiany współczynnika odbicia (S11). Tymi ważnymi parametrami są długość podawanego CPW (Cl), szerokość podłoża (W), szerokość linii zasilającej (Wf) oraz szczelina między linią zasilającą a dyskiem CPW (g). Całkowity wymiar fizycznej płaskiej anteny wynosi 26 mm × 26 mm × 1,6 mm, co odpowiada środkowemu zakresowi częstotliwości przy 7,5 GHz. Antena planarna UWB CPW jest zasilana przez współpłaszczyznowy falowód (CPW), aby uzyskać najlepsze dopasowanie impedancji dla systemów UWB. Prezentowana antena planarna CPW ma pasmo impedancji UWB 11,0 GHz od 2,6 GHz do 13,6 GHz przy tłumieniu odbiciowym −10 dB. Symulowana antena planarna UWB wykazuje dookólne zachowanie promieniowania z symulowanym wzmocnieniem 7,3 dB przy 13,6 GHz, kierunkowością 7,5 dBi przy 13,6 GHz i korzystną wydajnością promieniowania 97%. Prezentowana antena ma specjalizowaną perspektywę do zastosowania w systemach UWB oraz w paśmie X.
Wydawca

Rocznik
Strony
155--159
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK),Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia
  • Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK),Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia, zahriladha@utem.edu.my
  • Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI),Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK),Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia
autor
  • Instrumentation, Signals and physical systems (I2SP) Team, Department of physics, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
  • School of Computing, Universiti Utara Malaysia (UUM), Sintok, Kedah, Malaysia
autor
  • Istinye University, Faculty of Engineering and Natural Sciences, Electrical and Electronics Engineering Department, Sarıyer 34396, İstanbul, Turkey
  • Department of Electrical, Electronic and Communication Engineering, Pabna University of Science and Technology, Pabna 6600,Bangladesh
Bibliografia
  • [1] First Report and Order: ‘Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems’. FCC 02-48, February 2002.
  • [2] D. Dardari, A. Conti, U. Ferner, A. Giorgetti and M. Z. Win, "Ranging with ultrawide bandwidth signals in multipath environments", Proceedings of the IEEE, vol. 97, no. 2, pp. 404-426, 2009.
  • [3] W.S.YeohandW.S.T.Rowe,‘‘An UWB conical monopole antennafor multiservice wireless applications,’’ IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1085–1088, 2015, doi: 10.1109/LAWP.2015.2394295.
  • [4] R. V. S. R. Krishna and R. Kumar, ‘‘A dual-polarized squarering slot antenna for UWB, imaging, and radar applications,’’ IEEE Antennas Wire- less Propag. Lett., vol. 15, pp. 195–198, 2016, doi: 10.1109/LAWP.2015.2438013.
  • [5] S. Kim, Y. Kim, X. Li, and J. Kang, ‘‘Orthogonal pulse design in consid- eration of FCC and IEEE 802.15.4a constraints,’’ IEEE Commun. Lett., vol. 17, no. 5, pp. 896–899, May 2013, doi: https://doi.org/10.1109/LCOMM.2013.040213.122936.
  • [6] A. Domazetovic, L. J. Greenstein, N. B. Mandayam, and I. Seskar, ‘‘Propagation models for short-range wireless channels with predictable path geometries,’’ IEEE Trans. Commun., vol. 53, no. 7, pp. 1123–1126, Jul. 2005, doi: https://doi.org/10.1109/TCOMM.2005.851606.
  • [7] C. Marchais, G. Le Ray and A. Sharaiha, "UWB antennas time domain characterization", 11th Int. Symp. Antenna Technology and Applied Electromagnetics, pp. 136-137, 2005-Jun.
  • [8] L. Barbieri, M. Brambilla, R. Pitic, A. Trabattoni, S. Mervic and M. Nicoli, "UWB real-time location systems for smart factory:Augmentation methods and experiments", 2020 IEEE 31 st Annual Inter-national Symposium on Personal Indoor and Mobile Radio Communications, pp. 1-7, 2020.
  • [9] A. D. K. Al-Obaidi et al., "High efficiency dielectric resonator antenna using complementary ring resonator for bandwidth enhancement". Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2107-2114, 2022, doi: https://doi.org/10.11591/eei.v11i4.3681.
  • [10] A. J. A. Al-Gburi, I. M. Ibrahim, Z. Zakaria, and A. D. Khaleel, "Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure," (in English), ARPN Journal of Engineering and Applied Sciences, Article vol. 14, no. 10, pp. 3390-3393, 2019, doi: 10.36478/JEASCI.2019.3390.3393.
  • [11] M. Y. Zeain et al., “Design of helical antenna for next generation wireless communication,” Prz. Elektrotechniczny, no. 11, pp. 96–99, 2020.
  • [12] R. A. A. Kamaruddin et al., “Return loss improvement of radial line slot array antennas on closed ring resonator structure at 28 GHz,”Przegląd Elektrotechniczny,” vol. 2021, no. 5, pp. 65–69, 2021, doi: 10.15199/48.2021.05.10.
  • [13] A. Sabah and M. J. Frhan, “A new patch antenna for ultra wide band communication applications,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 2, pp. 848-855, 2020.
  • [14] R. H. Thaher and N. B. Hassan, “Design of p-shaped microstrip patch antenna for wireless communication systems,”Indonesian Journal of Electrical Engineering and Computer Science, vol. 15, no. 2, pp. 861-869, 2019.
  • [15] A. J. A. Al-Gburi, I. M. Ibrahim and Z. Zakaria, “An ultra-miniaturized MCPM antenna for ultra- wideband applications,” Journal of Nano-and Electronic Physics, vol. 13, no. 5, pp. 05012-1–05012-4, 2021, doi: https://doi.org/10.21272/jnep.13(5).05012.
  • [16] A.H. Majeed and K.H. Sayidmarie, "UWB elliptical patch monopole antenna with dual-band notched characteristics", International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 3591-3598, 2019.
  • [17] A. Q. Kamil and A.K. Jassim, "Design ultra-wideband antenna have a band rejection desired to avoid interference from existing bands," Bulletin of Electrical Engineering and Informatics, vol. 11, no.2, pp. 886-892, 2022, doi: 10.11591/eei.v11i2.3164.
  • [18] Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Abdulhameed, M.K.; Saeidi, T. Enhancing Gain for UWB Antennas Using FSS: A Systematic Review. Mathematics 2021, 9, 3301.
  • [19] A.J.A. Al-Gburi et al., "Super compact uwb monopole antenna for small iot devices," Computers, Materials & Continua, vol. 73, no.2, pp. 2785–2799, 2022, doi: 10.32604/cmc.2022.028074.
  • [20] J. Ali, N. Abdullah, R. Yahya, E. Mohd, A. Joret, N. Katiran, “Bistatic Configurational Analysis of Ultra-Wideband Antenna for Detection Applications”, Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 2, pp. 702-707, Feb. 2019.
  • [21] Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Ahmad, B.H.; Shairi, N.A.B.; Zeain, M.Y. High Gain of UWB Planar Antenna Utilising FSS Reflector for UWB Applications. Comput. Mater. Contin. 2022, 70, 1419–1436.
  • [22] AL-GBURI, Ahmed Jamal Abdullah et al. A parametric study on strawberry radiated shaped monopole antenna for ultrawide-band applications. Bulletin of Electrical Engineering and Informatics, vol.12, no. 1. pp. 232-239, feb. 2023.
  • [23] N. A. Koma'rudin, Z. Zakaria, A. A. Althuwayb, H. Lago, H. Alsariera et al., "Directional wideband wearable antenna with circular parasitic element for microwave imaging applications," Computers, Materials & Continua, vol. 72, no.1, pp. 983–998, 2022.
  • [24] Abdulhameed, M.K.; Kod, M.S.; Al-gburi, A.J.A. Enhancement of Elevation Angle for an Array Leaky-Wave Antenna. Prz. Elektrotech. 2021, 8, 109–113.
  • [25] Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Nazli, N.F.M. Wideband Microstrip Patch Antenna for Sub 6 GHz and 5G Applications. Prz. Elektrotech. 2021, 11, 26–29.
  • [26] Al-Gburi, A.J.A.; Zakaria, Z.; Ibrahim, I.M.; Halim, E. Microstrip Patch Antenna Arrays Design for 5G Wireless Backhaul Application at 3. 5 GHz. Recent Adv. Electr. Electron. Eng. 2022, 865, 77–88.
  • [27] Ahmad, S.; Manzoor, B.; Paracha, K.N.; Haider, S.; Liaqat, M.; Al-Gburi, A.J.A.; Ghaffar, A.; Alibakhshikenari, M.; Dalarsson, M. Wideband Bear-Shaped Compact Size Implantable Antenna for In-Body Communications. Appl. Sci. 2022, 12, 2859.
  • [28] Abdulhameed, M.K.; Hashim, S.R.; Abdalhameed, N.K.; Al-gburi, A.J.A. Increasing Radiation Power in Half Width Microstrip Leaky Wave Antenna by using Slots Technique. Int. J. Electr. Comput. Eng. 2022, 12, 392–398.
  • [29] Al-Gburi, A.J.A.; Ibrahim, I.M.; Ahmad, K.S.; Abdulhameed, M.K.; Saeidi, T. A Miniaturised UWB FSS with Stop-Band Characteristics for EM Shielding Applications. Prz. Elektrotech. 2021, 1, 142–145.
  • [30] A. J. A. Al-Gburi et al., “Broadband Circular Polarised Printed Antennas for Indoor Wireless Communication Systems: A Comprehensive Review,” Micromachines, vol. 13, no. 7, p. 1048, Jun. 2022, doi: 10.3390/mi13071048.
  • [31] A. J. A. Al-Gburi, I. B. M. Ibrahim, M. Y. Zeain and Z. Zakaria, "Compact Size and High Gain of CPW-Fed UWB Strawberry Artistic Shaped Printed Monopole Antennas Using FSS Single Layer Reflector," in IEEE Access, vol. 8, pp. 92697-92707, 2020, doi: 10.1109/ACCESS.2020.2995069.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4c0d3589-64f7-44d9-82b5-59e9cce06417
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.