Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 6 | 115--122
Tytuł artykułu

Spatiotemporal Mapping of Agricultural and Meteorological Drought in Wasit Province Based on GIS and Remote Sensing Data

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most common natural hazards that can endanger life and property is drought, which can happen under a variety of weather and environmental circumstances. This study aims to monitor the agricultural and metrological drought in the Wasit Province using remote sensing data. Landsat 8 images were used to create the agriculture drought maps based on the NDVI for the years 2013, and 2023. Additionally, SPI-12 was used for the same years to evaluate the meteorological drought. The findings demonstrated that while SPI readings in 2023 were lower, the SPI-12 in 2013 indicated near-normal drought types. Two types of drought have been identified: moderate and slight. The result shows that, for the year 2013 the percentage of moderate drought is 31%, slight drought 64%, and no drought 3.9% from the total area. While, in 2023 the percentage of moderate drought is 47%, slight drought 49%, and no drought 3.2% from the total area. It is noticed that in 2023, the moderate drought class increased by about 16%. Government planners may find this results valuable when developing and managing drought consequences.
Słowa kluczowe
EN
GIS   drought   NDVI   SPI   remote sensing  
Wydawca

Rocznik
Strony
115--122
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Aray, A., Stroosnijder, L. 2011. Assessing drought risk and irrigation need in northern Ethiopia. Agricultural and Forest meteorology, 15, 151(4), 425–36.
  • 2. Al-Abadi, A.M., Al-Shammaa, A.M. Aljabbari, M.H. 2017. A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Wasit governorate, southern Iraq. Appl. Water. Sci.,7, 89–101.
  • 3. Alwan, I.A., Aziz, N.A. 2022. Monitoring of surface ecological change using remote sensing technique over Al-Hawizeh Marsh, Southern Iraq. Remote Sensing Applications: Society and Environment, 27, 100784.
  • 4. Alwan, I.A., Karim, H.H. Aziz, N.A. 2019. Investigate the optimum agricultural crops production seasons in Salah Al-Din Governorate utilizing climate remote sensing data and Agro-climatic zoning. Iraqi Journal of Science, 2087–2094.
  • 5. Arshad, S., Morid, S., Reza, M.M., Agha, A.M. 2008. Development of Agricultural Drought Risk Assessment Model for Kermanshah Province (Iran), using satellite data and intelligence methods. Option Mediterrianeennes, Series A, 80.
  • 6. Aziz, N.A., Alwan, I.A. Agbasi, O.E. 2023. Integrating remote sensing and GIS techniques for effective watershed management: a case study of Wadi Al-Naft Basins in Diyala Governorate, Iraq, using ALOS PALSAR digital elevation model.Applied Geomatics, 1–10.
  • 7. Brian, D., Anderson, C. Verdin, J.P. 2012. Remote Sensing of Drought. Taylor & Francis Group.
  • 8. Dracup, J.A., Lee, K.S., Paulson, E.G. Jr. 1980. On the Definition of Droughts. Water Resources Research, 16(2), 297–302.
  • 9. Dolchinkov, N.T. 2024. Natural Emergencies and Some Causes of Their Occurrence: a Review. Trends in Ecological and Indoor Environment Engineering, 2(1), 18–27.
  • 10. Ganie, M.A., Nusrath, A. 2016 Determining the Vegetation Indices (NDVI) from Landsat 8 Satellite Data. Int. J. Adv. Res., 4(8), 1459–1463.
  • 11. Gulmez, S.P., Durdu, O.F. 2010. Investigating Spatial Distribution of Meteorological Drought in The Buyuk Menderes River Basin Using Standardized Precipitation Index. I. National Symposium on Agricultural Structures and Irrigation, Kahramanmaras, Turkey, 28.5.2010.
  • 12. Hayes, M., Wilhite, D.A., Svoboda, M., and Vanyarkho, O. 1999. Monitoring the 1996 drought using the Standardized Precipitation Index. Bulletin of the American Meteorological Society, 80, 429– 438.
  • 13. Hussein, L.Y., Alwan,, I.A., Ataiwe, T.N. 2023. Evaluation of the accuracy of direct georeferencing of smartphones for use in some urban planning applications within smart cities. In AIP Conference Proceedings, 2793(1), AIP Publishing.
  • 14. Hussein, L.Y., Alwan, I.A., Ataiwe, T.N. 2023. Smart city 3D modeling with a total station and a smartphone. In IOP Conference Series: Earth and Environmental Science, 1129(1), 012002, IOP Publishing.
  • 15. Khan, T., Mureed, F., Anwar, M., Khan, O., Ali, M., Ullah, W. 2023. Determination of suitable probability distribution of rainfall in pakistan considering multiplicity. Trends in Ecological and Indoor Environment Engineering, 1(1), 24–34
  • 16. Khudhur, M.H., Alwan, I.A., Aziz, N.A. 2023. Comparison of the accuracies of different spectral indices for mapping the vegetation covers in AlHawija district, Iraq. In AIP Conference Proceedings, 2775(1), AIP Publishing.
  • 17. Liu, H.Q., Huete, A.R. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing,33, 457–465.
  • 18. McKee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frequency and duration of time scales. Eighth Conference on Applied Climatology, American Meteorological Society, Jan17–23, Anaheim CA, 179–186.
  • 19. Mishra, A.K., Singh, V.P. 2010. A review of drought concepts. J. Hydrol., 391(1–2), 202–216.
  • 20. Nixon, S.C., Lack, T.J. and Hunt, D.T. 2000. Sustainable use of Europe’s water. Environmental assessment series, No.7, EEA, Luxembourg
  • 21. NOAA Satellite and Information Services Climate .2010. December, National Climatic Data Center, https://www.ncdc.noaa.gov/sotc/drought/201708
  • 22. North American Drought (NAD). 2011. A Paleo Perspective, Standard Precipitation Index (SPI), http://www.ncdc.noaa.gov/paleo/drought/drghtspi.html
  • 23. Noruzi, R. 2007. Assessment and Preparation of Critical Condition Map of Ground Water Resources Using GIS. M.Sc. thesis, Tehran University.
  • 24. Panu, U.S., Sharma, T.C. 2002. Challenges in drought research: some perspectives and future directions. Hydrological Sciences Journal, 47, S19–S30.
  • 25. Shahad, S.H., Malik, M.I., Al-Dabbagh, H.A. 2021. Change detection for Wasit province’s land coverbetween 2013 and 2020. In Journal of Physics: Conference Series, 2114(1), 012072, IOP Publishing.
  • 26. Sruthi, S., Aslam, M.A. 2014. Vegetation stress analysis using NDVI at drought Prone Raichur District, Karnataka. IWRM International Symposium. (IWRM2014).
  • 27. Thenkabail, P.S., Gamage, M.S., Smakhtin, V.U. 2004. The use of remote-sensing data for drought assessment and monitoring in southwest asia.
  • 28. Wilhite, D.A., Glantz, M.H. 1985. Understanding the drought phenomenon: The role of definitions. Water International, 10, 111–120.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4bd4b998-9d3c-441d-8c03-c34088931518
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.