Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | Vol. 65, no. 1 | 89--102
Tytuł artykułu

Insight into variability of spring and flash flood events in Lithuania

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, variability of spring (from 1 March to 30 May) and flash (from 1 June to 30 November) floods in rivers of different regions was analysed. The territory of Lithuania is divided into three regions according to hydrological regime of the rivers: Western, Central, and Southeastern. The maximum river discharge data of spring and flash floods [a total of 31 water gauging stations (WGS)] were analysed. Comparison of the data of four periods (1922–2013, 1941–2013, 1961–2013, and 1991–2013) with the data of the reference period (1961–1990) was performed. Analysis included the longest discharge data set of the Nemunas River at Smalininkai WGS (1812–2013) as well. Mixed patterns of flood changes in Lithuanian rivers were detected. The analysis of flood discharges of the Nemunas River indicated that both spring and flash floods in Lithuania were getting smaller.
Wydawca

Czasopismo
Rocznik
Strony
89--102
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
  • Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania
Bibliografia
  • 1. Arheimer B, Lindström G (2015) Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100). Hydrol Earth Syst Sci 19:771–784. doi:10.5194/hess-19-771-2015
  • 2. Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42(1):125–148. doi:10.1007/s11069-006-9065-2
  • 3. Bormann H, Pinter N, Elfert S (2011) Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. J Hydrol 404:50–66. doi:10.1016/j.jhydrol.2011.04.019
  • 4. Brazdil R, Glaser R, Pfister C, Stangl H (2002) Floods in Europe—a look into the past. PAGES News 10(3):21–23
  • 5. Chen H, Guo SL, Xu CY, Singh VP (2007) Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol 344(3–4):171–184. doi:10.1016/j.jhydrol.2007.06.034
  • 6. Dahmen ER, Hall MJ (1990) Screening of hydrological data: tests for stationarity and relative consistency. ILRI Publication No. 49, Wageningen
  • 7. Gailiušis B, Jablonskis J, Kovalenkovienė M (2001) The Lithuanian rivers. Hydrography and runoff. LEI, Kaunas (in Lithuanian)
  • 8. Gailiušis B, Kriaučiūnienė J, Jakimavičius D, Šarauskienė D (2011) The variability of long-term runoff series in the Baltic Sea drainage basin. Baltica 24(1):45–54
  • 9. Glaser R, Stangl H (2004) Climate and floods in Central Europe since AD 1000: data, methods, results and consequences. Surv Geophys 25:485–510. doi:10.1007/s10712-004-6201-y
  • 10. Han D (2001) Flood risk assessment and management. University of Bristol, Bristol
  • 11. Hisdal H, Stahl K, Tallaksen LM, Demuth S (2001) Have streamflow droughts in Europe become more severe or frequent. Int J Climatol 21:317–333. doi:10.1002/joc.619
  • 12. Jacobeit J, Glaser R, Luterbacher J, Wanner H (2003) Links between flood events in Central Europe since AD 1500 and large-scale atmospheric circulation modes. Geophys Res Lett 30(4):211–214. doi:10.1029/2002GL016433
  • 13. Kaczmarek Z (2003) The impact of climate variability on flood risk in Poland. Risk Anal 23:559–566. doi:10.1111/1539-6924.00336
  • 14. Kahya E, Kalaycı S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144. doi:10.1016/j.jhydrol.2003.11.006
  • 15. Kendall MG (1975) Rank correlation methods. Griffin, LondonGoogle Scholar
  • 16. Kochanek K, Strupczewski WG, Bogdanowicz E (2011) On seasonal approach to flood frequency modelling. Part II: Flood frequency analysis of Polish rivers. Hydrol Process 26(5):717–730. doi:10.1002/hyp.8178
  • 17. Korhonen J, Kuusisto E (2010) Long-term changes in the discharge regime in Finland. Hydrol Res 41(3–4):253–268. doi:10.2166/nh.2010.112
  • 18. Kriaučiūnienė J, Meilutytė-Barauskienė D, Reihan A, Koltsova T, Lizuma L, Šarauskienė D (2012) Variability in temperature, precipitation and river discharge in Baltic States. Boreal Environ Res 17:150–162
  • 19. Kundzewicz ZW, Graczyk D, Maurer T, Pińskwar I, Radziejewski M, Svensson C, Szwed M (2005) Trend detection in river flow series: 1. Annual maximum flow. Hydrol Sci J 50(5):797–810. doi:10.1623/hysj.2005.50.5.797
  • 20. Kundzewicz ZW, Pinskwar I, Brakenridge GR (2013) Large floods in Europe, 1985–2009. Hydrol Sci J 58(1):1–7. doi:10.1080/02626667.2012.745082
  • 21. Li ZL, Xu ZX, Li JY, Li ZJ (2008) Shift trend and step changes for runoff time series in the Shiyang River Basin, Northwest China. Hydrol Process 22(23):4639–4646. doi:10.1002/hyp.7127
  • 22. Llasat MC, Llasat-Botija M, Rodriguez A, Lindbergh S (2010) Flash floods in Catalonia: are current situation. Adv Geosci 26:105–111. doi:10.5194/adgeo-26-105-2010
  • 23. Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519(D):3634–3650. doi:10.1016/j.jhydrol.2014.11.003
  • 24. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259
  • 25. Mediero L, Kjeldsen TR, Macdonald N, Kohnova S, Merz B, Vorogushyn S, Wilson D, Alburquerque T, Blöschl G, Bogdanowicz E, Castellarin A, Hall J, Kobold M, Kriauciuniene J, Lang M, Madsen H, OnusluelGül G, Perdigão RAP, Roald LA, Salinas JL, Toumazis AD, Veijalainen N, Óðinn Þ (2015) Identification of coherent flood regions across Europe by using the longest stream flow records. J Hydrol 528:341–360. doi:10.1016/j.jhydrol.2015.06.016
  • 26. Meilutytė-Barauskienė D, Kovalenkovienė M (2007) Change of spring flood parameters in Lithuanian rivers. Energetika 2:26–33
  • 27. Reihan A, Koltsova T, Kriaučiūnienė J, Lizuma L, Meilutytė-Barauskienė D (2007) Changes in water discharges of the Baltic States rivers in the 20th century and its relation to climate change. Nord Hydrol 38(4–5):401–412
  • 28. Reihan A, Kriaučiūnienė J, Meilutyte-Barauskienė D, Kolcova T (2012) Temporal variation of spring flood in rivers of the Baltic States. Hydrol Res 43(4):301–314. doi:10.2166/nh.2012.141
  • 29. Šarauskienė D, Kriaučiūnienė J, Reihan A, Klavis M (2015) Flood pattern changes in the rivers of the Baltic countries. J Environ Eng Landsc Manag 23(2):28–38. doi:10.3846/16486897.2014.937438
  • 30. Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests arid regions of Iran. Water Resour Manag 26:211–224. doi:10.1007/s11269-011-9913-z
  • 31. Solín L (2008) Analysis of floods occurrence in Slovakia in the period 1996–2006. J Hydrol Hydromech 56:95–115
  • 32. Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2011) On seasonal approach to flood frequency modelling. Part I: Two-component distribution revisited. Hydrol Process 26(5):705–716. doi:10.1002/hyp.8179
  • 33. Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2016) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative Polish rivers. Acta Geophys 64(1):206–236. doi:10.1515/acgeo-2015-0070
  • 34. Thorsteinsson T, Björnsson H (2012) Climate change and energy systems, impacts, risks and adaptation in the Nordic and Baltic countries. Nordic Council of Ministers, Copenhagen, Danmark
  • 35. Tonkaz T, Çetin M, Kâzım T (2007) The impact of water resources development projects on water vapour pressure trends in a semi-arid region, Turkey. Clim Chang 82(1):195–209. doi:10.1007/s10584-006-9160-0
  • 36. Wu H, Soh LK, Samal A, Chen XH (2008) Trend analysis of streamflow drought events in Nebraska. Water Resour Manag 22(2):145–164. doi:10.1007/s11269-006-9148-6
  • 37. Yaning C, Changchun X, Xingming H, Weihong L, Yapeng C, Chenggang Z, Zhaoxia Y (2009) Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat Int 208(1–2):53–61
  • 38. Yiou P, Ribereau P, Naveau P, Nogaj M, Brázdil R (2006) Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrol Sci J 51(5):930–945. doi:10.1623/hysj.51.5.930
  • 39. Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho test for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. doi:10.1016/S0022-1694(01)00594-7
  • 40. Zhang Q, Liu C, Xu CY, Xu YP, Jiang T (2006) Observed trends of water level and streamflow during past 130 years in the Yangtze River basin, China. J Hydrol 324(1–4):255–265. doi:10.1016/j.jhydrol.2005.09.023
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4b798fd1-1e1a-42b6-86be-5bf871406471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.