Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 1 | 110--117
Tytuł artykułu

Effect of Cutting-Edge Geometry on the Machinability of 316L Austenitic Steel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the problem of selecting the correct tool geometry in high-speed milling of 316L stainless steel. Carbide milling cutters with two configurations of helix angle (40/42 degrees for tool#1 and 35/38 degrees for tool#2) with different cutting edge radiuses rn (i.e. 4 µm, 6 µm, 8 µm, 10 µm and 12 µm) were prepared and their impact on cutting force and roughness were analyzed. The obtained results revealed that the small changes in cutting edge radius rn have a significant effect on both cutting forces and surface roughness. In this context, irrespective to the type of the tool, increasing the cutting edge radius results in further cutting force. However, increasing the cutting edge radius shows different behavior on roughness while using different tool helix angles. For the tool#1, it was found that the surface roughness increases by increasing the cutting edge radius from 6 μm to 12 μm; while in the samples machined by tool #2, increase in cutting edge radius results in reduction of roughness. It was also found that irrespective to the values of cutting edge radius, the cutting force while using tool #1 is slightly less than the tool#2. In addition, the induced milling surface roughness of the samples machined by tool#2 is significantly less than the tool#1 where the mean value of Ra was reduced from 2.55 µm to 0.35 µm
Wydawca

Rocznik
Strony
110--117
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, marcin.malek@doktorant.pk.edu.pl
  • POLTRA Sp. z o.o., Grabskiego 42, 37-450 Stalowa Wola, Poland
  • Chair of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, reza.teimouri@pk.edu.pl
Bibliografia
  • 1. Elewa R.R., Araoyinbo A.O., Fayomi O.S I., Samuel A.U., Biodun M.B., et al. Effect of machining on stainless steel: A review. IOP Conference Series. Materials Science and Engineering; Bristol 2021; 1107: 012084
  • 2. Walczak M., Surface Characteristics and wear resistance of 316L stainless steel after different shot peening parameters. Advances in Science and Technology Research Journal 2023; 17(3): 124-132.
  • 3. Sarafan S., Wanjara P., Gholipour J., Bernier F., Osman M., Sikan, F., Soost, J., Amos R., Patnaik P., Brochu M. Benchmarking of 316L stainless steel manufactured by a hybrid additive/subtractive technology. Journal of Manufacturing and Materials Processing 2022; 6: 30.
  • 4. Jabbar Hassan A., Boukharouba T., Miroud D., Titouche N., Ramtani, S. Experimental investigation of friction pressure influence on the characterizations of friction welding joint for AISI 316, International Journal of Engineering 2020; 33(12): 2514-2520.
  • 5. Equbal A., Equbal M.A., Equbal M.I., Ravindrannair P., Khan Z.A., Badruddin I.A., Kamangar S., Tirth V., Javed S., Kittur M.I. Evaluating CNC milling performance for machining AISI 316 stainless steel with carbide cutting tool insert. Materials 2022; 15: 8051.
  • 6. Gowthaman P.S., Jeyakumar S., Saravanan B.A. Machinability and tool wear mechanism of duplex stainless steel–A review. Materials Today: Proceedings 2020; 26: 1423-1429.
  • 7. Twardowska A., Ślusarczyk Ł., Kowalski M. Impact of deposition of the (TiBx/TiSiyCz) x3 multilayer on M2 HSS on the cutting force components and temperature generated in the machined area during the milling of 316L steel. Materials 2022; 15(3): 746.
  • 8. Lv D., Wang Y., Yu X., Chen H., Gao Y. Analysis of abrasives on cutting edge preparation by drag finishing. Int. J. Adv. Manuf. Technol 2022; 119(5-6): 3583–3594.
  • 9. Lv D., Wang Y., Yu X. Effects of cutting edge radius on cutting force, Tool Wear, and Life in Milling of SUS-316L Steel. Int. J.Adv. Manuf. Technol 2020; 111(9-10): 2833–2844.
  • 10. Altintas Y. and Ber A.A. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Appl. Mech. Rev. 2001; 54(5): B84-B84.
  • 11. Dudzinski D. and Molinari A. A modelling of cutting for viscoplastic materials. International Journal of Mechanical Sciences 1997; 39(4): 369-389.
  • 12. Tounsi N., Vincenti J., Otho A., Elbestawi M.A. From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. International Journal of Machine Tools and Manufacture 2002; 42(12): 1373-1383.
  • 13. Amaro P., Ferreira P., Simões F. Comparative analysis of different cutting milling strategies applied in duplex stainless steel. Procedia Manufacturing 2020; 47: 517-524.
  • 14. Shao H., Liu L., Qu HL. Machinability study on 3% Co–12% Cr stainless steel in milling. Wear 2007; 263(1-6): 736-744.
  • 15. Jomaa W., Songmene V., Bocher P. Surface finish and residual stresses induced by orthogonal dry machining of AA7075-T651. Materials 2014; 7(3): 1603-1624.
  • 16. Sun Y., Liu Y., Zheng M. et al. Correction to: A review on theories/methods to obtain surface topography and analysis of corresponding affecting factors in the milling process. Int J Adv Manuf Technol 2023; 127: 3133.
  • 17. Burek J., Żyłka Ł., Płodzień M., Sułkowicz P., Buk J. The effect of the cutting edge helix angle of the cutter on the process of chips removing from the cutting zone. Mechanik 2007; 11: 962–964.
  • 18. Franczyk EA., Małek M. Empirical study on the effect of tungsten carbide grain size on wear resistance, cutting temperature, cutting forces and surface finish in the milling process of 316L stainless steel. Advances in Science and Technology Research Journal 2023; 17(6): 367-77.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4b651b24-1c94-4e7b-86dd-61697551ca10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.