Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an experiment on acoustic excitation of electromagnetic radiation (EMR) signals in skarn, sandstone, and magnetite ore samples. For the skarn and sandstone samples, the EMR signal amplitude was observed to decrease with increasing ultimate strength. Supposedly, this effect can be explained by assuming that EMR is generated when an acoustic wave propagates through an electrical double layer. The presence of piezoelectric inclusions (e.g., quartz) in the magnetite ore enhances the analog EMR signal and its spectral components.
Czasopismo
Rocznik
Tom
Strony
1446--1461
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University, Tomsk, Russia
autor
- Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University, Tomsk, Russia
autor
- Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University, Tomsk, Russia, pif@tpu.ru
autor
- Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia
Bibliografia
- Baddari, K., G.A. Sobolev, A.D. Frolov, and A.V. Ponomarev (1999), An integrated study of physical precursors of failure in relation to earthquake prediction, using large scale rock blocks, Ann. Geophys. 42, 5, 771-787, DOI: 10.4401/ ag-3758.
- Baddari, K., A.D. Frolov, V. Tourtchine, F. Rahmoune, and S. Makdeche (2015), Effect of stress-strain conditions on physical precursors and failure stages development in rock samples, Acta Geophys. 63, 1, 62-102, DOI: 10.2478/ s11600-014-0206-9.
- Bespal’ko, A.A., L.V. Yavorovich, and P.I. Fedotov (2005), Communication parameters of electromagnetic signals with electrical characteristics of rocks under acoustic and quasi-static exposures, Izv. Tomsk Polytech. Univ. 308, 7, 18-23 (in Russian).
- Bespal’ko, A.A., L.V. Yavorovich, E.V. Viitman, P.I. Fedotov, and V.A. Shtirts (2010), Dynamoelectric energy transfers in a rock mass under explosion load in terms of the Tashtagol mine, J. Min. Sci. 46, 2, 136-142, DOI: 10.1007/s10913-010-0018-5.
- Borla, O., G. Lacidogna, E. Di Battista, G. Niccolini, and A. Carpinteri (2015) Electromagnetic Emission as Failure Precursor Phenomenon for Seismic Activity Monitoring Conference Proceedings of the Society for Experimental Mechanics Series 2015, Fracture, Fatigue, Failure, and Damage Evolution, Vol. 5, 221-229, DOI: 10.1007/978-3-319-06977-7_29.
- Carpinteri, A., F. Cardone, and G. Lacidogna (2010), Energy emissions from failure phenomena: mechanical, electromagnetic nuclear, Exp. Mech. 50, 8, 1235- 1243, DOI: 10.1007/s11340-009-9325-7.
- Carpinteri, A., G. Lacidogna, O. Borla, and A. Manuello (2012), Electromagnetic and neutron emission from brittle rocks failure: Experimental evidence and geological implications, Sadhana, 37, 1, 59-78, DOI: 10.1007/s12046-012- 0066-4.
- Carpinteri, A., G. Lacidogna, A. Manuello, and O. Borla (2013), Piezonuclear fission reactions from earthquakes and brittle rock failure: evidence of neutron emission and non-radioactive product elements, Exp. Mech. 53, 3, 345-365, DOI: 10.1007/s11340-012-9629-x.
- Cs´efalvay, G., and P. Sedl´ak (2012), Experimental study on feature selection using artificial AE. In: 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission University of Granada, 12-15 September.
- Fidani, C. (2011), The Central Italy electromagnetic network and the 2009 L`Aquila earthquake: observed increases in anomalies, Geosciences 1, 1, 3-25, DOI: 10.3390/geosciences1010003.
- Frid, V., and K. Vozoff (2005), Electromagnetic radiation induced by mining rock failure, Int. J. Coal Geol. 64, 1-2, 57-65, DOI: 10.1016/j.coal.2005.03.005.
- Frid, V., A. Rabinovitch, and D. Bahat (2003), Fracture induced electromagnetic radiation, J. Phys. D 36, 13, 1620-1628, DOI: 10.1088/0022-3727/36/13/330.
- Gol’d, R.M., G.P. Markov, and P.G. Mogila (1975), Pulsed electromagnetic radiation of minerals and rock subjected to mechanical loading, Izv. Earth Phys. 7, 109-111.
- Kani, K., T. Yamada, and M. Abe (1985), Hugoniot and electric resistivity measurement on amorphous Se. In: Proc. 4th Amer. Phys. Soc. Conf. on Shock Waves in Condensed Matter, Spokane, Washington, 22-25 July,. Plenum Press, N.Y., 477-482.
- Khatiashvili, N.G., and M.E. Perel’man (1989), On the mechanism of seismoelectromagnetic phenomena and their possible role in the electromagnetic radiation during periods of earthquakes, foreshocks and aftershocks, Phys. Earth Planet Inter. 57, 1-2, 169-177, DOI: 10.1016/0031-9201(89)90226-4.
- Kobayashi, H., K. Horikawa, K. Ogawa, and K. Watanabe (2014), Impact compressive and bending behavior of rocks accompanied by electromagnetic phenomena, Phil. Trans. Roy. Soc. A 372, 2023, 20130292, DOI: 10.1098/ rsta.2013.0292.
- Koktavy, P. (2009), Experimental study of electromagnetic emission signals generated by crack generation in composite materials, Meas. Sci. Technol. 20, 1, 015704-8, DOI: 10.1088/0957-0233/20/1/015704.
- Koktavy, P., J. Pavelka, and J. Sikula (2004), Characterization of acoustic and electromagnetic emission sources, Meas. Sci. Technol. 15, 5, 973-977, DOI: 10.1088/0957-0233/15/5/028.
- Lacidogna, G., A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, and A. Agosto (2011), Acoustic and electromagnetic emissions as precursor phenomena in failure processes, Strain 47, Suppl. s2, 144-152, DOI: 10.1111/j.1475-1305.2010.00750.x.
- Lacidogna, G., O. Borla, G. Niccolini, and A. Carpinteri (2013), Dynamic behavior of materials. In: Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 1, 387-393.
- Heiniö, M. (ed.) (1999), Excavation Engineering Handbook, Sandvik Tamrock Corp.
- Mavko, G., T. Mukerji, and J. Dvorkin (2009), The Rock Physics Handbook, 2nd ed., Cambridge University Press, Cambridge.
- Perel`man, M.E., and N.G. Khatiashvili (1983), Generation of electromagnetic radiation during oscillation of double electric layers and its manifestation at earthquakes, Dokl. Akad. Nauk SSSR 271, 80-83.
- Ponomarev, A., G. Sobolev, and A. Koltsov (2002), Acoustic emission under electric excitation. In: ESC XXVIII General Assembly, Genova, Book of Abstracts, p. 238.
- Scholz, C.H. (1968), Microfracturing and the inelastic deformation of rock in compression, J. Geophys. Res. 73, 4, 14-17, DOI: 10.1029/JB073i004p01417.
- Sedlak, P., J. Sikula, T. Lokajicek, and Y. Mori (2008), Acoustic and electromagnetic emission as a tool for crack localization, Meas. Sci. Technol. 19, 4, 045701-7, DOI: 10.1088/0957-0233/19/4/045701.
- Sobolev, G.A., A.V. Ponomarev, Yu.Ya. Maibuk, N.A. Zakrzhevskaya, V.I. Ponyatovskaya, D.G. Sobolev, A.A. Khromov, and Yu.V. Tsyvinskaya (2010), The dynamics of the acoustic emission with water initiation, Izv. Phys. Solid Earth 46, 2, 136-153, DOI: 10.1134/S1069351310020035.
- Sobotka, J. (2004), The laboratory modelling of effect of electric and acoustic fields interaction in porous media saturated with water or hydrocarbons, Acta Geophys. Pol. 52, 3, 381-396.
- Sobotka, J. (2009a), DC induce acoustic emission of saturated sand models of sedimentary rocks, Acta Geophys. 58, 3, 381-396, DOI: 10.2478/s11600-009- 0046-1.
- Sobotka, J. (2009b), Longitudinal ultrasonic waves in DC electric field, Acta Geophys. 57, 2, 247-256, DOI: 10.2478/s11600-008-0072-4.
- Wan, G.-X., X.-B. Li, and L. Hong (2008), Piezoelectric responses of brittle rock mass containing quartz to static stress and exploding stress wave respec tively, J. Central South Univ. Technol. 15, 3, 344-349, DOI: 10.1007/ s11771-008-0065-0.
- Warwick, J.W., C. Stoker, and T.R. Meyer (1982), Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960, J. Geophys. Res. 87, B4, 2851-2859, DOI: 10.1029/ JB087iB04p02851.
- Yavorovich, L.V., R.M. Gold, and V.V. Lasukov (1999), Investigating the amplitude of the electromagnetic signal on impact on the sample rocks with different porosity, Fiz.-Tekhn. Probl. Razrabotki Poleznykh Iskopaemykh 6, 33-39 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4b5b4e7f-db53-4416-8ceb-bf73ab553d80