Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 44, No. 4 | 431--444
Tytuł artykułu

Driving factors affecting spatial and temporal variations in the structure of phytoplankton functional groups in a temperate reservoir

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the twenty-five years of existence, water quality has declined and severe blooms of cyanobacteria have occurred in the Grlište Reservoir. Changes in phytoplankton functional groups over time and along horizontal and vertical gradients were investigated in the course of a one-year study in this water-supply reservoir. We identified 19 dominant taxa, classified into 12 phytoplankton associations. The presence of the codons C, P, D and S1 differentiated the transitional from the lacustrine part of the reservoir. The nitrogen-fixing cyanobacteria Dolichospermum viguieri dominated the phytoplankton community in the epilimnion during August and September, when the reservoir showed P-limitation, but the bloom was not observed. The driving factors that accounted for the main variability in phytoplankton functional groups along the seasonal and vertical profile were identified using the direct gradient analysis (RDA). Our results revealed the importance of two bipolar factors. The first factor explained the variability in phytoplankton due to thermal stratification and physical mixing, each process affecting the algal community in contrasting ways. The second factor was interpreted as reduction vs. oxidation processes. Positive correlation between stratification and water pumping by a drinking water plant indicated that human activities were not severe enough to break down the thermal stability of the reservoir and to cause a cyanobacterial bloom.
Wydawca

Rocznik
Strony
431--444
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia, ciricmilosh@yahoo.com
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
autor
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
autor
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
Bibliografia
  • [1]. APHA (1992). Standard Methods for the Examination of Water and Wastewater. 18th edition. Washington: American Public Health Association.
  • [2]. APHA (1995). Standard Methods for the Examination of Water and Wastewater. 19th edition. Washington: American Public Health Association.
  • [3]. APHA (1998a). Method 4500-NO2 B. In: L.S. Clesceri, A.E. Greenberg & A.D. Eaton (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 4-145). Washington DC: American Public Health Association.
  • [4]. APHA (1998b). Method 4500-P D. In: L.S. Clesceri, A.E. Greenberg & A.D. Eaton (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 4-145). Washington DC: American Public Health Association.
  • [5]. Becker, V., Huszar, V.L.M. & Crossetti L.O. (2009). Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia 628: 137-151. DOI: 10.1007/s10750-009-9751-7.
  • [6]. Becker, V., Caputo, L., Ordónez, J., Marcé, R., Armengol, J., Crossetti, L.O. & Huszar V.L.M. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44: 3345-3354. DOI: 10.1016/j.watres.2010.03.018.
  • [7]. Beutel, M., Horne, A., Taylor, W., Losee, R. & Whitney R. (2008). Effects of oxygen and nitrate on nutrient release from profundal sediments of a large, oligo-mesotrophic reservoir, Lake Mathews, California. Lakes & Reservoirs: Research & Management 24: 18-29.
  • [8]. Boström, B., Andersen, J.M., Fleischer, S. & Jansson M. (1988). Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229-244. DOI: 10.1007/ BF00024907.
  • [9]. Caputo, L., Naselli-Flores, L., Ordonez, J. & Armengol J. (2008). Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshwater Biol. 53: 2543-2556. DOI: 10.1111/j.1365-2427.2008.02082.x.
  • [10]. Coesel, P.F.M. (1993). Poor physiological adaptation to alkaline culture conditions in Closterium acutum var. variabile, a planktonic desmid from eutrophic waters. Eur. J. Phycol. 28: 53-57. DOI: 10.1080/09670269300650081.
  • [11]. Cole, G.A. (1983). Textbook of limnology. 3rd edition. Illinois: Waveland Press Inc., Prospect Heights.
  • [12]. Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollinger, U. & Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403-424. DOI: 10.1046/j.1529-8817.1999.3520403.x.
  • [13]. ISO 9297 (1989). Water Quality - Determination of chloride - Silver nitrate titration with chromate indicator (Mohr’s method). Geneva: International Organization for Standardization.
  • [14]. ISO 10260 (1992). Water Quality - Measurement of Biochemical Parameters - Spectrometric Determination of the Chlorophyll-a Concentration. Geneva: International Organization for Standardization.
  • [15]. Jørgensen, S.E., Löffler, H., Rast, W. & Straškraba, M. (2005). Lake and Reservoir Management, First Edition. Amsterdam: Elsevier BV.
  • [16]. Kalff, J. (2002). Limnology: Inland Water Ecosystems. New Jersey: Prentice Hall.
  • [17]. Komárkova, J., Komárek, O. & Hejzlar J. (2003). Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods. Hydrobiologia 504: 143-157. DOI: 10.1023/B:HYDR.0000008514.45771.aa.
  • [18]. Kruk, C., Mazzeo, N., Lacerot, G. & Reynolds C.S. (2002). Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. J. Plankton Res. 24: 901-912. DOI: 10.1093/plankt/24.9.901.
  • [19]. Naselli-Flores, L. & Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85-99. DOI: 10.1007/s10750-005-1149- 6.
  • [20]. Padisák, J. & Reynolds, C.S. (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41-53. DOI: 10.1023/A:1003255529403.
  • [21]. Padisák, J., Barbosa, F.A.R., Koschel, R. & Krienitz L. (2003). Deep layer cyanoprokaryota maxima are constitutional features of lakes: Examples from temperate and tropical regions. Arch. Hydrobiol., Special Issues, Advances in Limnology 58: 175-199.
  • [22]. Padisák, J., Crossetti, L.O. & Naselli-Flores L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1-19. DOI: 10.1007/s10750-008-9645-0.
  • [23]. Pedrós-Alió, C., Gasol, J.M. & Guerrero, R. (1987). On the ecology of a Cryptomonas phaseolus population forming a metalimnetic bloom in Lake Cisó, Spain: Annual distribution and loss factors. Limnol. Oceanogr. 32: 285¬298.
  • [24]. Reynolds, C.S. (1976). Succession and vertical distribution of phytoplankton in response to thermal stratification in a lowland mere, with special reference to nutrient availability. J. Ecol. 64: 529-551.
  • [25]. Reynolds, C.S. (2000). Phytoplankton designer - or how to predict compositional responses to trophic-state change. Hydrobiologia 424: 123-132. DOI: 10.1007/978-94-017- 3488-2_11.
  • [26]. Reynolds, C., Dokulil, M. & Padisák J. (2000). Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now? Hydrobiologia 424: 147-152. DOI: 10.1023/A:1003973532706.
  • [27]. Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo S. (2002). Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417-428. DOI: 10.1093/plankt/24.5.417.
  • [28]. Reynolds, C.S. (2006). The ecology of phytoplankton. Cambridge: Cambridge University Pres.
  • [29]. Serra, T., Vidal, J., Casamitjana, X., Soler, M. & Colomer J. (2007). The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnol. Oceanogr. 52: 620-634.
  • [30]. Sommer, U., Gliwicz, Z.M., Lampert, W. & Duncan A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471.
  • [31]. Stankovic, S. (2005). Lakes of Serbia. Belgrade (RS): Zavod za udzbenike i nastavna sredstva. (In Serbian).
  • [32]. Straškrábová, V., Šimek, K. & Vrba J. (2005). Long-term development of reservoir ecosystems - changes in pelagic food webs and their microbial component. Limnetica 24: 9-20.
  • [33]. Svirčev, Z., Simeunovic, J., Subakov-Simic, G., Krstić, S. & Vidovic M. (2007). Freshwater cyanobacterial blooms and cyanotoxin production in Serbia in the past 25 years. Geogr. Pannonica 11: 32-38.
  • [34]. SZZZ (1990). Method P-IV-9a. In: S. Škunca-Milovanovic, R. Feliks & B. Durovic (Eds.), Drinking Water - Standard Methods for Examination of Hygienic Correctness (pp. 134¬136). Belgrade: Savezni zavod za zdravstvenu zaštitu & NIP Privredni pregled. (In Serbian).
  • [35]. ter Braak, C.J.F. & Šmilauer P. (2002). CANOCO Reference Manual and CanoDrawfor Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). New York, USA: Microcomputer Power, 500 pp.
  • [36]. Utermöhl, H. (1958). Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1-38.
  • [37]. Winder, M., Reuter, J.E. & Schladow S.G. (2009). Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B 276: 427-435.
  • [38]. Xiao, L.J., Wang, T., Hu, R., Han, B.P., Wang, S., Qian, X., & Padisák J. (2011). Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res. 45: 5099-5109. DOI: 10.1016/j.watres.2011.07.012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4b30f3ec-379f-447b-8a80-9559e6075fa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.