Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 3 | 1--6
Tytuł artykułu

Rapd-Analysis of Flax Varieties of the Ukrainian National Collection

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on the use of RAPD (Random Amplified Polymorphic DNA) molecular primers, linked to the sign of fiber content in the stems of flax. The main purpose of the research is to identify genetic polymorphism based on the fiber content, inter- and intraspecific genetic relationships between domestic and foreign flax varieties and hybrids. Realization of this aim will allow the number of tasks: 1) to increase the possibilities for successfully identify flax varieties and hybrids, 2) group the breeding material according to its genetic affinity, which will optimize the selection of pairs for crossing, 3) it is better to integrate traditional breeding methods (hybridization, selection, mutagenesis) with molecular biology methods for creation flax varieties with specified parameters of valuable economic traits and, as a consequence, to make selection most successful. 24 varieties and hybrids of flax were investigated using the method of polymerase chain reaction and separation of DNA fragments by gel electrophoresis. A small number of loci on electrophoregrams were detected, which indicates a small affinity of the selection material, which was also confirmed by the use of cluster analysis.
Wydawca

Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
Bibliografia
  • 1. Chesnokov Yu.V. 2018. Genetic markers: a comparative classification of molecular markers. Breeding and Seed Production of Agricultural Plants, 3(41), 11–15. (In Ukrainian)
  • 2. Khlestkina E.K. 2013. Molecular markers in genetic research and breeding. Vavilov Journal of Genetics and Breeding, 17(1), 1044–1054. (In Ukrainian)
  • 3. Syvolap Yu.M. 2013. Molecular markers and breeding. Cytology and Genetics, 47, 71–80. (In Ukrainian)
  • 4. Sukhareva A.S., Kuluev B.R. 2018. DNA markers for genetic analysis of cultivated plant varieties. Biomics, 10(1), 69–84. (In Ukrainian)
  • 5. Montaldo Hugo H. 1998. Use of molecular markers and major genes in the genetic improvement of livestock. Electronic Journal of Biotechnology, 1(2), 83–89.
  • 6. Vromans Jaap. 2006. Molecular genetic studies in flax (Linum usitatissimum L.). Proefschrift ter verkrijging van de graad van doctor op gezag. Wageningen, р. 144.
  • 7. Guzenko E.V., Lemesh V.A., Baer G.Ya., Baer O.A. 2008. Preparation of transgenic flax plants carrying the chimeric gene GFP-TUA6. Genetics and Biotechnology of the 21st Century. Fundamental and Applied Aspects: materials of the International Scientific Conference, December 3–6, 2008 Minsk: Publishing House of the BSU Center, pp. 62–64.
  • 8. Ludvikova Michaela, Griga Miroslav. 2015. Transgenic Flax/Linseed (Linum usitatissimum L.) – еxpectations and reality. Czech Journal Genetics Plant Breeding, 51(4), 123–141.
  • 9. Uschapovskii I.V., Lemesh V.A., Bogdanova M.V., Guzenko E.V. 2016. Features of breeding and prospects for applying molecular genetic methods in genetic breeding studies of flax (Linum usitatissimum L.). Agricultural Biology, 51(5), 602–616. (In Ukrainian)
  • 10. Bayer G.Ya. 2014. Bioinformatic search for gene sequences encoding tubulins in the flax genome. Factors of Organism Experimental Evolution, 14, 14–17.
  • 11. Postovoitova A.S., Pirko Ya.V., Blium Ya.B. 2016. Polymorphism of the lengths of the second intron of actin genes in the genome of Linum usitatissimum L. Factors of Organism Experimental Evolution, 19, 38–42. (In Ukrainian)
  • 12. Porokhovinova E.A. 2012. Genetic control of morphological seedlings, fruit and seeds in flax (Linum usitatissimum L.). Vavilov Journal of Genetics and Breeding, 4/2(1), 963–947. (In Ukrainian)
  • 13. Loginov M.I., Rosnovskyi M.H., Lohinov A.M. 2014. Breeding of fibre flax: historical aspects of development. Factors of Organism Experimental Evolution, 14, pp. 236–240. (In Ukrainian)
  • 14. Diederichsen Axel, Yong-Bi Fu. 2008. Flax Genetic Diversity as the Raw Material for Future Success. International Conference on Flax and Other Bast Plants, pp. 270–280.
  • 15. Mastoshi Nei, Wen-Hsiung Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269–5273.
  • 16. Chețan F., Chețan C., Bogdan I., Pop A.I., Moraru P.I. & Rusu T. 2021. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three–Year Experiment under Transylvanian Plain Climate Conditions. Land; 10(2), 200. doi.org/10.3390/land10020200
  • 17. Demydas H.I., Galushko I.V., Butenko A.O., Karbivska U.M. & Asanishvili N.M. 2021. Fodder productivity of different meadow clover varieties depending on the elements of growing technology. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 51(03), 1801–1811. https://www.shin-norinco.com/volume/AMA/51/03/fodder-productivity-of-different-meadow-clovervarieties-depending-on-the-elements-of-growingtechnology-612e77db8cd72.pdf
  • 18. Kvitko Maksym, Getman Nadiia, Butenko Andrii, Demydas Grygory, Moisiienko Vira, Stotska Svitlana, Burko Lesya & Onychko Viktor. 2021. Factors of increasing alfalfa yield capacity under conditions of the Forest–steppe. Agraarteadus. Journal of Agricultural Science, 1, XXXII, 59–66. DOI: 10.15159/jas.21.10
  • 19. Litke L., Gaile Z., Ruža A. 2019. Effect of nitrogen rate and forecrop on nitrogen use efficiency in winter wheat (Triticum aestivum). Agronomy Research, 17(2), 582–592. doi.org/10.15159/AR.19.040
  • 20. Nan Li–li, Shi Shang–li, Guo Quan–en, Bai Xiao–ming. 2019. Effects of seeding rate and row spacing on nutritional value of alfalfa in the arid oasis region of Gansu Province. Acta Prataculturae Sinica, 28(1), 108–119. doi:10.11686/cyxb2018426
  • 21. Novák V., Křížová K., Šařec P. 2020. Biochar dosage impact on physical soil properties and crop status. Agronomy Research, 18(4), 2501–2511. doi.org/10.15159/AR.20.192
  • 22. Tanchyk S., Litvinov D., Butenko A., Litvinova O., Pavlov O., Babenko A., Shpyrka N., Onychko V., Masyk I. & Onychko T. 2021. Fixed nitrogen in agriculture and its role in agrocenoses. Agronomy Research, 19(2), 601–611. doi.org/10.15159/AR.21.086
  • 23. Tonkha O., Butenko A., Bykova O., Kravchenko Y., Pikovska O., Kovalenko V., Evpak I., Masyk I., Zakharchenko E. 2021. Spatial Heterogeneity of Soil Silicon in Ukrainian Phaozems and Chernozems. Journal of Ecological Engineering, 22(2): 111–119. doi.org/10.12911/22998993/130884
  • 24. Rieznik S., Havva D., Butenko A., Novosad K. 2021. Biological activity of chernozems typical of different farming practices. Agraarteadus, pp. 32(2), 307–313. DOI: 10.15159/jas.21.34.
  • 25. Karbivska, Ulyana, Nadiia Asanishvili, Andrii Butenko, Valentina Rozhko, Olena Karpenko, Оksana Sykalo, Tetyana Chernega, Ihor Masyk, Andrii Chyrva & Alla Kustovska. 2022a. Changes in Agrochemical Parameters of Sod-Podzolic Soil Depending on the Productivity of Cereal Grasses of Different Ripeness and Methods of Tillage in the Carpathian Region. Journal of Ecological Engineering, 23(1), 55–63. doi:10.12911/22998993/143863.
  • 26. Hryhoriv Y., Butenko A., Nechyporenko V., Lyshenko M., Ustik T., Zubko V., Makarenko N., Mushtai V. 2021. Economic efficiency of Camelina sativa growing with nutrition optimization under conditions of Precarpathians of Ukraine. Agraarteadus, 32(2), 232–238. DOI: 10.15159/jas.21.33.
  • 27. Woźniak A. 2019. Chemical Properties and Enzyme Activity of Soil as Affected by Tillage System and Previous Crop. Agriculture, 9(12), 262. doi: 10.3390/agriculture9120262
  • 28. Yakupoglu T., Gundogan R., Dindaroglu T., Kusvuran K., Gokmen V., Rodrigo–Comino J. Gyasi–Agyei Y. & Cerdà A. 2021. Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments. Sustainability, 13, pp. 789. doi.org/10.3390/ su13020789
  • 29. Karbivska Uliana, Masyk Ihor, Butenko Andrii, Onychko Viktor, Onychko Tetiana, Kriuchko Lyudmyla, Rozhko Valentina, Karpenko Olena, Kozak Maksym. 2022b. Nutrient Balance of Sod–Podzolic Soil Depending on the Productivity of Meadow Agrophytocenosis and Fertilization. Ecological Engineering & Environmental Technology, 23(2), 70–77. doi.org/10.12912/27197050/144957
  • 30. Lys N.M., Tkachuk N.L., Butenko A.O., Onychko V.I., Rozhko V.M., Karpenko O.Yu., Chernega, T.O., Masyk I.M., Berdin S.I. 2021. Five-year cycle efficiency of willow and poplar growing under conditions of Pre-carpathians. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 51(01), 821–830.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4b20373f-1652-4777-9e2f-c6e247a956b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.