Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 39, No. 3 | 383--394
Tytuł artykułu

Solidification microstructure in a supercooled binary alloy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maximum undercooling that has been achieved for Ni-Cu alloy, by using molten glass purification and cyclic super-heating technology, is 270 K. With the help of high-speed photography, the solidification front images of Ni-Cu alloy at various typical undercooling were obtained. Two grain refinements occurred in the range of 60 K< ΔT < 100 K and ΔT > 170 K, the solidification front became smoother, and the solidification position appeared randomly. With the increase of undercooling, the transition from solute diffusion to thermal diffusion leads to the transition from coarse dendrite to directional fine dendrite. At large undercooling, considerable stress is accumulated and some dislocations exist in the microstructure. However, the proportion of high-angle grain boundaries is as high as 89%, with twin boundaries of 13.6% and most strain-free structures, and the microhardness decreases sharply. This indicates that the accumulated stress at large undercooling causes the plastic strains in the microstructure, and in the later stage of recalescence, part of the plastic strains is dissipated by the system and acts as the driving force to promote the recrystallization of the microstructure.
Słowa kluczowe
Wydawca

Rocznik
Strony
383--394
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China, wanghongfu@nuc.edu.cn
autor
  • School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
autor
  • Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
autor
  • College of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051, China, zhaoyuhong@nuc.edu.cn
Bibliografia
  • [1] Herlach DM. Non-equilibrium solidification of under-cooled metallic melts. Key Eng Mater. 1993;81:83–94.
  • [2] Castle EG, Mullis AM, Cochrane RF. Mechanism selection for spontaneous grain refinement in undercooled metallic melts. Acta Materialia. 2014;77:76–84.
  • [3] Liu N, Liu F, Yang G, Chen Y, Chen D, Yang C, et al. Grain refinement of undercooled single-phase Fe70Co30 alloys. Phys B. 2007;387:151–5.
  • [4] Xu XL, Chen YZ, Liu F. Recrystallization mechanism of grain refinement in hypercooled single phase alloys. JCryst Growth. 2013;377:153–9.
  • [5] Lu SY, Li JF, Zhou YH. Grain refinement in the solidification of undercooled Ni–Pd alloys. JCryst Growth. 2007;309:103–11.
  • [6] Horvay G. The tension field created by a spherical nucleus freezing into its less dense undercooled melt. Int J Heat Mass Transfer. 1965;8:195–243.
  • [7] Li JF, Lü YL, Yang GC, Zhao YH. Directional solidification of undercooled melt. Prog Nat Sci. 1997;7:98–103.
  • [8] Willnecker R, Herlach DM, Feuerbacher B. Grain refinement induced by a critical crystal growth velocity in undercooled melts. Appl Phys Lett. 1990;56:324–6.
  • [9] Xu XL, Liu F. Recrystallization and twinning in rapidly solidified nickel based alloys without man-made plastic deformation. J Alloys Compd. 2014;615:156–62.
  • [10] Karma A. Model of grain refinement in solidification of undercooled melts. Int J Non-Equilibrium Process. 1998;11:201–33.
  • [11] Liu F, Gencang Y. Stress-induced recrystallization mechanism for grain refinement in highly undercooled superalloy. JCryst Growth. 2001;231:295–305.
  • [12] Liu F, Yang GC. Rapid solidification of highly under-cooled bulk liquid superalloy: recent developments, future directions. Int Mater Rev. 2006;51:145–70.
  • [13] Boettinger WJ, Coriell SR, Trivedi R. In: Mehrabian R, Parrish PA editors. Rapid solidification processing: principles and technologies IV. Baton Rouge, LA: Claitor's Pulishing Division; 1988. pp. 13–18.
  • [14] Zhang T, Liu F, Wang HF, Yang GC. Grain refinement in highly undercooled solidification of Ni85Cu15 alloy melt: Direct evidence for recrystallization mechanism. ScriptaMaterialia. 2010;63:43–6.
  • [15] Yang W, Liu F, Liu H, Wang HF, Yang GC, Zhou YH. Numerical description for the recalescence of bulk-undercooled Cu70Ni30 alloy. JCryst Growth. 2009;311:3225–30.
  • [16] Wang HF, Feng LI, Kang WA, Zhai HM. Effect of back diffusion on overall solidification kinetics of under-cooled single-phase solid-solution alloys. Trans Nonferrous Metals Society of China. 2012;22:642–6.
  • [17] Xu XL, Chen YZ, Liu F. Evidence of recrystallization mechanism of grain refinement in hypercooled Co80Pd20 alloys. Mater Lett. 2012;81:73–5.
  • [18] Yang W, Xu ZF, Li WJ, Cai CC, Li S, Liu F, et al. Comparisons of grain refinement and recalescence behavior during the rapid solidification of undercooled Cu–Co and Cu–Ni alloys. Phys B. 2011;406:3710–4.
  • [19] Xu XL, Liu F. Crystal growth due to recrystallization upon annealing rapid solidification microstructures of deeply undercooled single phase alloys quenched before recalescence. Cryst Growth Des. 2014;14:2110–4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4a7fbea9-7b0e-44e5-ba2e-65046d5ece3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.