Czasopismo
2009
|
Vol. 44, No. 4
|
131--148
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The spherical Slepian functions can be used to localize the solutions of the gradiometric boundary value problems on a sphere. These functions involve spatially restricted integral products of scalar, vector and tensor spherical harmonics. This paper formulates these integrals in terms of combinations of the Gaunt coefficients and integrals of associated Legendre functions. The presented formulas for these integrals are useful in recovering the Earth’s gravity field locally from the satellite gravity gradiometry data.
Rocznik
Tom
Strony
131--148
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Division of Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden, eshagh@kth.se
Bibliografia
- Albertella A., Sansò F. and Sneeuw N. (1999) Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. Journal of Geodesy, Vol. 73, 436-447.
- Albertella A., Migliaccio F. and Sansò F. (2002) GOCE: The Earth Field by Space Gradiometry. Celestial Mechanics and Dynamical Astronomy, Vol. 83, 1-15.
- Balmino G., Perosanz F., Rummel R., Sneeuw N., Sünkel H. and Woodworth P. (1998) European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document, ESA, ESD-MAGREP-CON-001.
- Balmino G., Perosanz F., Rummel R., Sneeuw N. and Sünkel H. (2001) CHAMP, GRACE and GOCE: Mission Concepts and Simulations. Bollettino di Geofisica Teoricae Applicata, Vol. 40, 3-4, 309-320.
- Eshagh M. (2008) Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame, Computers & Geosciences, Vol. 34, 1762-1768.
- Eshagh M. (2009a) On satellite gravity gradiometry, Doctoral dissertation in Geodesy, TRITA-TEC-PHD-09004, ISSN 1653-4468Royal Institute of Technology (KTH), Stockholm, Sweden.
- Eshagh M. (2009b) Complementary studies in satellite gravity gradiometry, Postdoctoral report in Geodesy, TRITA-TEC-RR 09-006, ISSN 1653-4484, ISBN 13:978-91-85539-47-5, Royal Institute of Technology (KTH), Stockholm, Sweden.
- Eshagh M. (2009c) The effect of polar gaps on the solutions of gradiometric boundary value problems, Artificial Satellites, Vol. 43, No. 3, 97-108.
- Eshagh M. (2010) Alternative expression for gravity gradients in local north-oriented frame and tensor spherical harmonics, Acta Geophysica, Vol. 58, 215-243.
- Grünbaum F.A., Longhi L. and Perlstadt M. (1982) Differential operators commuting with finite convolution integral operators: some non-abelian examples. SIAM Journal of Applied Mathematics, Vol. 42, 941-955.
- Heiskanen W. and Moritz H. (1967) Physical Geodesy, W. H. Freeman and company, San Francisco and London.
- Hwang C. (1991) Orthogonal Functions Over the Oceans and Applications to the Determination of Orbit Error, Geoid and Sea Surface Topography from Satellite Altimetry, PhD dissertation, JPL 958121, OSURF 720426, 229 pp, Dec, 1991.
- Ilk K.H. (1983) Ein Beitrag zur Dynamik ausgedehnter KörperGravitationswechselwirkung. Deutsche Geodätische Kommission, Reihe C, Heft Nr. 288, München.
- Kim M.C. and Tapley B. (2000) Formation of surface spherical harmonic normal matrices and application to high-degree geopotential modeling, Journal of Geodesy, Vol. 74, 359-375.
- Koop R. (1993) Global gravity field modeling using satellite gravity gradiometry. Publ Geodesy, New series, No. 38. Netherland Geodetic Commission, Delft.
- Mainville A. (1986) The altimetry-gravimetry problem using orthonormal base functions, Report No. 373, Dept. of Geod Sci, The Ohio state University, Columbus, Ohio.
- Martinec Z. (2003) Green’s function solution to spherical gradiometric boundaryvalue problems, Journal of Geodesy, Vol. 77, 41-49.
- Miranian L. (2004) Slepian functions on the sphere, generalized Gaussian quadrature rule. Inverse Problems, Vol. 20, 877-892.
- Pail R., Plank G. and Schuh W. D. (2001) Spatially restricted data distribution on the sphere: the method of orthonormalized functions and applications, Journal of Geodesy, Vol. 75, 44-56.
- Paul M.K. (1978) Recurrence relations for integrals of associated Legendre functions, Bulletin Geod esique, Vol. 52, 177-190.
- Rummel R. (1997) Spherical spectral properties of the Earth gravitational potential and its first and second derivatives, Geodetic boundary value problems in view of the one centimeter geoid, Lecture notes in Earth sciences Edited by Sanso F. and Rummel R., p.359-401.
- Rummel R., Sanso F., Gelderen M., Koop R., Schrama E., Brovelli M., Migiliaccio F. and Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publ Geodesy, New Series, No. 39 Netherlands Geodetic Commission, Delft.
- Sebilleau D. (1998) On the computation of the integrated products of three spherical harmonics, Journal of Physics A: Mathematical and General, Vol. 31, 7157-7168.
- Slepian D. (1983) Some comments on Fourier-analysis, uncertainty and modeling, SIAM, Vol. 25, 379-393.
- Simons M., Solomon S.C. and Hager B. H. (1997) Localization of gravity and topography: constraints on the tectonic and mantle dynamics of Venus, Geophysical Journal International, Vol. 131, 24-44.
- Simons F.J. Dahlen F.A. and Wieczorek M.A. (2006) Spatiospectral concentration on a sphere, SIAM Review, Vol. 48, 3, 504-536.
- van Gelderen M. and Rummel R. (2001) The solution of the general boundary value problem by least-squares, Journal of Geodesy, Vol. 75, 1-11.
- van Gelderen M. and Rummel R. (2002) Corrections to ‘‘The solution of the general geodetic boundary value problem by least squares”. Journal of Geodesy, Vol. 76, 121-122.
- Varshalovich D.A., Moskalev A.N. and Khersonskii V.K. (1989) Quantum theory of angular momentum. World Scientific Publ, Singapore.
- Wieczorek M.A. and Simons F.J. (2005) Localized spectral analysis on the sphere, Geophysical Journal International, Vol. 162, 655-675.
- Xu Y.L. (1996) Fast evaluation of the Gaunt coefficients, Mathematical Computations, Vol. 65, 1601-1612.
- Zerilli F.J. (1970) Tensor harmonics in canonical form for gravitational radiation and other application. Journal of mathematical Physics, Vol. 11, 2203-2208.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4a553c79-2ca5-44be-8c09-c1fb9d7add16