Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 4 | 1129--1137
Tytuł artykułu

Reliability of diaphragm wall in serviceability limit states

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a procedure using serviceability limit state equations to calculate the reliability index for a laterally loaded diaphragm wall. The reliability indices related to the serviceability limit state have been obtained by creating two response surfaces: one based on the maximum lateral displacements of wall head and the other one using the maximum values of bending moments widening cracks in the wall concrete. The global reliability index has been obtained by using the appropriate system reliability formulae proposed by structural reliability theory.
Wydawca

Rocznik
Strony
1129--1137
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Faculty of Civil Engineering, Wrocław University of Technology, Wybrzeże St. Wyspiańskiego 27, 50-370 Wrocław, Poland, marek.wyjadlowski@pwr.wroc.pl
autor
  • Faculty of Civil Engineering, Wrocław University of Technology, Wybrzeże St. Wyspiańskiego 27, 50-370 Wrocław, Poland, wojciech.pula@pwr.wroc.pl
autor
  • Faculty of Geoengineering, Geology and Mining, Wrocław University of Technology, Na Grobli 15, 50-421 Wrocław, Poland, jerzy.bauer@pwr.wroc.pl
Bibliografia
  • [1] M. Long, Database for retaining wall and ground movements due to deep excavations, Journal of Geotechnical and Geoenvironmental Engineering 127 (3) (2001) 203–224.
  • [2] M. Puller, Deep Excavations: A Practical Manual, Thomas Telford Publishing, 1996.
  • [3] N.P. Kurian, AN Introduction to Modern Techniques in Geotechnical and Foundation Engineering, Alpha Science International Ltd., 2013.
  • [4] A. Osman, M. Bolton, A new design method for retaining walls in clay, Canadian Geotechnical Journal 41 (3) (2004) 451–466.
  • [5] L.M. Zhang, A. Ng, Probabilistic limiting tolerable displacements for serviceability limit state design of foundations, Geotechnique 55 (2) (2005) 151–161.
  • [6] Z.P. Bažant, Mechanics of distributed cracking, Applied Mechanics Reviews 39 (5) (1986) 675–705.
  • [7] M.F. Kanninen, C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, 1985.
  • [8] R. Kinash, O. Kinash, The calculation of crack width of reinforced concrete beams perpendicular to the mechanical damage on the basis of mechanical destruction (in Polish), Górnictwo i Geoinżynieria 34 (2) (2010) 371–380.
  • [9] S. Pietruszczak, E. Haghighat, Modeling of fracture propagation in concrete structures using a constitutive relation with embedded discontinuity, Studia Geotechnica et Mechanica 36 (4) (2014) 27–32.
  • [10] A. Radlinska, Reliability-Based Analysis of Early-Age Cracking in Concrete, (Ph.D. thesis), Purdue University, 2008.
  • [11] V. Tandrija, C.I. Teh, B.K. Low, Reliability analysis of laterally loaded piles using response surface methods, Structural Safety 22 (4) (2000) 335–355.
  • [12] G. Imançli, M.R. Kayaoĝlu, G. Özden, Limit state moment function for laterally single piles in local OC clay, Pamukkale University Journal of Engineering Sciences 15 (3) (2009) 405–416.
  • [13] S. Haldar, S. Babu, Effect of soil spatial variability on the response of laterally loaded pile in undrained clay, Computers and Geotechnics 35 (4) (2008) 537–547.
  • [14] M. Hohenbichler, S. Gollwitzer, W. Kruse, R. Rackwitz, New light on first and second-order reliability methods, Structural Safety 4 (4) (1987) 267–284.
  • [15] W. Puła, Applications of Structural Reliability Theory to Evaluation of Foundations Safety (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2004.
  • [16] Polish Standard PN-B-03264:2002. Concrete, reinforced- concrete and compressed structures. Static calculations and design (in Polish), Warszawa.
  • [17] W.I. Muraszow, Crack Resistance, Stiffness, Strength of Reinforced Concrete, (in Russian), Maszstrojizdat, Moskwa, 1950.
  • [18] J. Bauer, J. Kozubal, W. Puła, M. Wyjadłowski, Displacement analysis of laterally loaded piles embedded in a three-dimensional linearly-elastic random medium (in Polish with English abstract), Górnictwo i Geoinżynieria 33 (1) (2009) 65–74.
  • [19] J. Kozubal, W. Puła, M. Wyjadłowski, J. Bauer, Influence of varying soil properties on evaluation of pile reliability under lateral loads, Journal of Civil Engineering and Management 19 (2) (2013) 272–284.
  • [20] R.H. Meyers, D.C. Montgomery, Response Surface Methodology Process and Product Optimisation Using Design Experiments, John Wiley and Sons, New York, 1995.
  • [21] J. Bauer, W. Puła, Reliability with respect to settlement limit-states of shallow foundation on linearly-deformable subsoil, Computers & Geotechnics 25 (3–4) (2000) 281–308.
  • [22] O. Ditlevsen, Narrow reliability bounds for structural systems, Journal of Structural Mechanics 7 (4) (1979) 453–472.
  • [23] O. Ditlevsen, H.O. Madsen, Structural Reliability Methods, John Wiley & Sons, Chichester, 1996.
  • [24] European Standard EN 1992-1-2, Eurocode 2:2004, Design of concrete structures. Part 1-2: General rules – Structural fire design.
  • [25] A. Kudzys, R. Kliukas, Probability-based design of spun concrete beam-columns, Journal of Civil Engineering and Management 16 (2) (2010) 451–461.
  • [26] International Standard ISO 2394:1998, General principles of engineering structure reliability.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4a3e9dc2-3087-4dd6-b2b5-7aa393fd8fa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.