Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 28, no. 3 | 171--191
Tytuł artykułu

Thermal behavior of hollow and solid steel beamswith different boundary conditions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal behavior of hollow steel structural members due to the temperature increasehas not been investigated and discussed in many design codes. This work presents a studyof the hollow and solid steel beams’ carrying capacity under elevated temperatures. Thematerial properties of such beams decline under the temperature expected to increasethe moments on the beams. The finite difference technique is selected first to analyze theproblem. The solved problems cover beams under concentrated point load levels with dif-ferent end conditions such as cantilever, pin roller, and both ends fixed. The beam response(deflection, bending moment, and normal force) is examined. The finite element analysiswas conducted using the DIANA FEA software to study the same problem incorporatingmaterial and geometric nonlinearities. It was found that both finite difference and finiteelement analysis solved the problem accurately when the temperature was under 500C.It was also found that when the temperature was applied to the beam bottom face thedeflection was smaller than when the temperature was applied to the side faces only andthe whole section.
Wydawca

Rocznik
Strony
171--191
Opis fizyczny
Bibliogr 19 poz., tab., wykr.
Twórcy
  • Institute of Technology, Middle Technical University, Baghdad, Iraq
Bibliografia
  • 1. V.P. e Silva, R.H. Fakury, Brazilian standards for steel structures fire design, Fire Safety Journal , 37 (2): 217–227, 2002, doi: 10.1016/S0379-7112(01)00044-3 .
  • 2. Eurocode – Basis of structural design (EN 1990:2002 + A1), European Committee for Standardization, Brussels, 2005.
  • 3. A.S. Usmani, J.M. Rotter, S. Lamont, A.M. Sanad, M. Gillie, Fundamental principles of structural behavior under thermal effects, Fire Safety Journal , 36 (8): 721–744, 2001, doi: 10.1016/S0379-7112(01)00037-6 .
  • 4. Y.C. Wang, Steel and Composite Structures Behavior and Design For Fire Safety , Spon Press, London, New York, 2002.
  • 5. H. dos R. Mourão, V.P. e Silva, On the behavior of single-span steel beams under uniform heating, Journal of The Brazilian Society of Mechanical Sciences and Engineering , 29 (1): 115–122, 2007, doi: 10.1590/S1678-58782007000100015 .
  • 6. C. Crosti, Structural analysis of steel structures under fire loading, Acta Polytechnica , 49 (1): 21–28, 2009, doi: 10.14311/1083 .
  • 7. M. Dwaikat, V. Kodur, Engineering approach for predicting fire response of restrained steel beams, Journal of Engineering Mechanics , 137 (7): 447–461, 2011, doi: 10.1061/(ASCE)EM.1943-7889.0000244 .
  • 8. H.K. Patade, M.A. Chakrabarti, Thermal stress analysis of beam subjected too fire, In- ternational Journal of Engineering Research and Applications (IJERA) , 3 (5): 420–424, 2013.
  • 9. M. Kucz, K. Rzeszut, Ł. Polus, M. Malendowski, Influence of boundary conditions on the thermal response of selected steel members, Procedia Engineering , 57 : 977–985, 2013, doi: 10.1016/j.proeng.2013.04.124 .
  • 10. B.V. Patil, M.S. Ramgir, Study of structural steel members under thermal loading, International Journal of Science, Engineering and Technology Research (IJSETR) , 5 (8), 2016.
  • 11. L. Lausova, I. Skotnicova, V. Michalcova, Thermal transient analysis of steel hollow sections exposed to fire, Perspectives in Science , 7 : 247–252, 2016, doi: 10.1016/j.pisc.2015.11.040 .
  • 12. M. Neuenschwander, M. Knobloch M. Fontana, Elevated temperature mechanical properties of solid section structural steel, Construction and Building Materials , 149 : 186–201, 2017, doi: 10.1016/j.conbuildmat.2017.05.124 .
  • 13. M. Łukomski, P. Turkowski, P. Roszkowski, B. Papis, Fire resistance of unprotected steel beams – comparison between fire tests and calculation models, Procedia Engineering , 172 : 665–672, 2017, doi: 10.1016/j.proeng.2017.02.078 .
  • 14. Eurocode 1: Actions on structures Part 1-2: General actions – Actions on structures exposed to fire (EN 1991-1-2), European Committee for Standardization, Brussels, 2002.
  • 15. Eurocode 3: Design of steel structures-Structural fire design, prEN 1993-1-2, European Committee for Standardization, Brussels, 2003.
  • 16. B. Wong, Temperature analysis of partially heated steel members in fire, Journal of Constructional Steel Research , 128 : 1–6, 2017, doi: 10.1016/j.jcsr.2016.08.008 .
  • 17. C. Chinwuba Ike, Timoshenko beam theory for the flexural analysis of moderately thick beams – variational formulation, and closed form solution, TECNICA ITALIANA-Italian Journal of Engineering Science , 63 (1): 34–45, 2019, doi: 10.18280/ti-ijes.630105 .
  • 18. M. Attaa, A.A. Abd-Elhady, A. Abu-Sinna, H.E.M. Sallam, Prediction of failure stages for double lap joints using finite element analysis and artificial neural networks, Engineering Failure Analysis , 97 : 242–257, 2019, doi: 10.1016/j.engfailanal.2019.01.042 .
  • 19. S.A. Daud, R.A. Daud, A.A. Al-Azzawi, Behavior of reinforced concrete solid and hol- low beams that have additional reinforcement in the constant moment zone, Ain Shams Engineering Journal , 12 (1): 31–36, 2021, doi: 10.1016/j.asej.2020.07.017
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4a3461f8-dc1d-4bb2-99ce-249c9d26db79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.