Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 24, nr 1 | 35--44
Tytuł artykułu

Existence of solutions for nonlinear Schrödinger systems with periodic data perturbations

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with a class of the stationary nonlinear Schrödinger Systems in RN. Our main tools are based on variational methods. More precisely, by using Ekeland’s Variational Principle, the Mountain Pass Theorem and the Nehari Manifold Method, an existence result is established.
Wydawca

Rocznik
Strony
35--44
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Applied Mathematics Laboratory, Faculty of Exact Sciences, University of Bejaia, Bejaia 06000, Algeria, chergui_thiziri@yahoo.fr
autor
  • Applied Mathematics Laboratory, Faculty of Exact Sciences, University of Bejaia, Bejaia 06000, Algeria, tas_saadia@yahoo.fr
Bibliografia
  • [1] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001), no. 2, 121-140.
  • [2] G. A. Afrouzi and S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the (p1, . . . , pn)-Laplacian, Nonlinear Anal. 70 (2009), no. 1, 135-143.
  • [3] C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal. 51 (2002), no. 7, 1187-1206.
  • [4] C. O. Alves, Existence of solution for a degenerate p(x)-Laplacian equation in ℝN, J. Math. Anal. Appl. 345 (2008), no. 2, 731-742.
  • [5] C. O. Alves, Existence of radial solutions for a class of p(x)-Laplacian equations with critical growth, Differential Integral Equations 23 (2010), no. 1-2, 113-123.
  • [6] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of problems in ℝN involving the p(x)-Laplacian, in: Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl. 66, Birkhäuser, Basel (2006), 17-32.
  • [7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477.
  • [8] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin, 2010.
  • [9] A. Djellit and S. Tas, Existence of solutions for a class of elliptic systems in ℝN involving the p-Laplacian, Electron. J. Differential Equations 2003 (2003), Paper No. 56.
  • [10] A. Djellit, Z. Youbi and S. Tas, Existence of solutions for elliptic systems in ℝN involving the p(x)-Laplacian, Electron. J. Differential Equations 2012 (2012), Article No. 131.
  • [11] D. E. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.
  • [12] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
  • [13] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30-42.
  • [14] X. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(Ω)„ J. Math. Anal. Appl. 262 (2001), 749-760.
  • [15] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317.
  • [16] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.
  • [17] X. Fan, Y. Zhao and D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the space W1,p(x)(Ω), J. Math. Anal. Appl. 255 (2001), no. 1, 333-348.
  • [18] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl. (Berlin) 13, Springer, Paris, 1993.
  • [19] A. Kristály, Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 2, 465-477.
  • [20] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283.
  • [21] S. Ogras, R. A. Mashiyev, M. Avci and Z. Yucedag, Existence of solutions for a class of elliptic systems in ℝN involving the (p(x), q(x))-Laplacian, J. Inequal. Appl. 2008 (2008), Article ID 612938.
  • [22] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000.
  • [23] M. Struwe, Variational Methods, 2nd ed., Ergeb. Math. Grenzgeb. (3) 34, Springer, Berlin, 1996.
  • [24] S. Tas, Etude de Systèmes elliptiques non linéaires, Ph.D. thesis, University of Annaba, Algeria, 2002.
  • [25] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. 24, Birkhäuser, Boston, 1996.
  • [26] X. Xu and Y. An, Existence and multiplicity of solutions for elliptic systems with nonstandard growth condition in ℝN, Nonlinear Anal. 68 (2008), no. 4, 956-968.
  • [27] H. Yin and Z. Yang, Three solutions for a class of quasilinear elliptic systems involving the p(x)-Laplace operator, Bound. Value Probl. 2012 (2012), Paper No. 30.
  • [28] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer, New York, 1990.
  • [29] Q. Zhang, Existence of radial solutions for p(x)-Laplacian equations in ℝN, J. Math. Anal. Appl. 315 (2006), no. 2, 506-516.
  • [30] W. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math USSR Izv. 29 (1987), 33-66.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4a30ad9d-9153-4429-b593-6b48e9f2186c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.