Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 45, No. 3 | 377--387
Tytuł artykułu

Dry weight and calcium carbonate encrustation of two morphologically different Chara species : a comparative study from different lakes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two charophyte species (Chara tomentosa Thulli. 1799 and Chara globularis L. 1753) were studied to assess their biomass and CaCO3 production in seven hard-water lakes in Western Poland. In each lake, samples of ten individuals from three study sites were collected for dry weight (DW) and calcium carbonate content (% CaCO3) analyses. Additionally, physicochemical parameters of water collected from the above sampling sites were analyzed. No significant differences were found between the study sites in each lake for any of the analyzed parameters. In all the lakes, DW of C. tomentosa (0.60 ± 0.23 g indiv.-1) was significantly higher and more differentiated than DW of C. globularis (0.11 ± 0.08 g indiv.-1), suggesting species-specificity. The CaCO3 content in DW for C. tomentosa was higher (58.8-70.9%) than in C. globularis (50.1-68.3%), however, it did not reflect the DW differentiation, suggesting lake-specificity. The physicochemical properties of water revealed clear lake-to-lake differentiation. Different correlations between dry weight and calcium carbonate content and lake characteristics were found for each species. The results showed that DW and % CaCO3 are closely related to habitat conditions and different factors may influence the individual biomass of each species.
Wydawca

Rocznik
Strony
377--387
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
autor
  • Polish-German Research Institute, Collegium Polonicum, Adam Mickiewicz University in Poznań, ul. Kościuszki 1, 69-100 Słubice, Poland, pukacz@europa-uni.de377--387
  • Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland
  • Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61-614 Poznań, Poland
autor
  • Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland
Bibliografia
  • [1]. Asaeda, T., Senavirathna, M.D.H.J., Kaneko, Y. & Rashid, M.H. (2014). Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquat. Bot. 113: 100-106. DOI: 10.1016/j.aquabot.2013.11.002.
  • [2]. Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H. et al. (2006). Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131-145. DOI: 10.1016/j.sedgeo.2005.12.008.
  • [3]. Blindow, I., Hargeby, A. & Andersson, G. (2002). Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat. Bot. 72: 315-334. DOI: 10.1016/s0304-3770(01)00208-x.
  • [4]. Blindow, I., Hargeby, A. & Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737: 99-110. DOI: 10.1007/ s10750-013-1687-2.
  • [5]. Blindow, I. (1992a). Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biol. 28: 15-27. DOI: 10.1111/j.1365-2427.1992. tb00558.x.
  • [6]. Blindow, I. (1992b). Decline of charophytes during eutrophication; a comparison to angiosperms. Freshwater Biol. 28: 9-14. DOI: 10.1111/j.1365-2427.1992.tb00557.x.
  • [7]. Cyrwus, A. 2009. Phytocoenotic diversity of rush and aquatic vegetation and the spatial structure of Lake Karskie, Unpublished master thesis. Faculty of Biology, Adam Mickiewicz University in Poznań. (In Polish).
  • [8]. Dittrich, M. & Koschel, R. (2002). Interactions between calcite precipitation (natural or artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49-57. DOI: 10.1016/s0043-1354(96)00278-3.
  • [9]. Dittrich, M., Obst, M. (2004). Are picoplankton responsible for calcite precipitation in lakes? Ambio. 33: 559-564. DOI: 10.1639/0044-7447(2004)033[0559:aprfcp]2.0.co;2.
  • [10]. Heiri, O., Lotter, A.F. & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25: 101-110. DOI: 10.1023/A:1008119611481.
  • [11]. Hutchinson, G.E. (1975). A Treatise on Limnology, Vol. 3: Limnological Botany. Wiley; Chapman and Hall Ltd., New York; London.
  • [12]. Jańczak, J. (1996). Atlas of Polish lakes. Vol. I. Lakes of Pojezierze Wielkopolskie and Pomorskie lakelands within the Odra basin. Instytut Meteorologii i Gospodarki Wodnej, Bogucki Wydawnictwo Naukowe, Poznań. (In Polish).
  • [13]. Kelts, K., Hsü, K.J., (1978). Freshwater carbonate sedimentation. In A. Lerman (Ed.), Lakes. Chemistry, geology, physics (pp. 295-323) Springer - Verlag, New York, Heidelberg, Berlin.
  • [14]. Krause, W. (1997). Charales (Charophycae). Süsswasserflora von Mitteleuropa, Band 18. Gustav Fischer. Jena, Germany.
  • [15]. Krause, W. (1997). Charales (Charophyceae). Susswasserflora von Mitteleuropa, Band 18. - Gustav Fischer, Jena. (In German).
  • [16]. Krolikowska, J. (1997). Eutrophication processes in a shallow, macrophytes dominated lake - species differentiation, biomass and the distribution of submerged macrophytes in Lake Łuknajno (Poland). Hydrobiologia 342/343: 411-416. DOI: 10.1007/978-94-011-5648-6_44.
  • [17]. Kufel, L., Biardzka, E. & Strzałek, M. (2013). Calcium carbonate incrustation and phosphorus fractions in five charophyte species. Aquat. Bot. 109: 54-57. DOI: 10.1016/j. aquabot.2013.04.002.
  • [18]. Kufel, L. & Kufel, I. (2002). Chara beds acting as nutrient sinks in shallow lakes - a review. Aquat. Bot. 72: 249-260. DOI: 10.1016/s0304-3770(01)00204-2.
  • [19]. Kufel, L. & Rymuza, K. (2014). Comparing the effect of phytoplankton and charophyte on calcite precipitation in lake water: experimental approach. Pol. J. Ecol. 62: 431-439. DOI: 10.3161/104.062.0305.
  • [20]. McConnaughey, T.A. & Falk, R.H. (1991). Calcium-proton exchange during algal calcification. Biol. Bull. 180: 185-195. DOI: 10.2307/1542440.
  • [21]. Murphy, T.P., Kali, K.J. & Yesaki, I. (1983). Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 56-96. DOI: 10.4319/lo.1983.28.1.0058.
  • [22]. Otsuki, A. & Wetzel, R.G. (1972). Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763-767. DOI: 10.4319/lo.1972.17.5.0763.
  • [23]. Pełechaty, M., Pełechata, A. & Pukacz, A. (2007). Charophyte flora and vegetation against the background of the trophy state of Lubuskie Lakeland, mid-Western Poland. Bogucki Wydawnictwo Naukowe, Poznań. (In Polish).
  • [24]. Pełechaty, M., Pukacz, A., Apolinarska, K., Pełechata, A. & Siepak, M. (2013). The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017-1035. DOI: 10.1111/sed.12020.
  • [25]. Pełechaty, M., Ossowska, J., Pukacz, A., Apolinarska, K. & Siepak, M. (2015) Site-dependent species composition, structure and environmental conditions of Chara tomentosa L. meadows, western Poland. Aquat. Bot. 120: 92-100. DOI: 10.1016/j.aquabot.2014.06.015.
  • [26]. Pełechaty, M. & Pukacz, A. (2006). Charophyte flora and vegetation of lakes of Wędrzyn Military Training Ground and Łagów Landscape Park (mid-Western Poland) against the background of the state of aquatic and rush vegetation. Ekologia i Technika 14(6): 237-245. (In Polish).
  • [27]. Pełechaty, M. & Pukacz, A. (2008). Identification key for charophytes (Characeae) in rivers and lakes. Inspekcja Ochrony Środowiska. Biblioteka Monitoringu Środowiska, Warszawa. (In Polish).
  • [28]. Pentecost, A., Andrews, J.E., Dennis, P.F., Marca-Bell, A. & Dennis S. (2006). Charophyte growth in small temperate water bodies: Extreme isotopic disequilibrium and implications for the palaeoecology of shallow marl lakes. Palaeogeograph., Palaeoclimatol., Palaeoecol. 240: 389-404. DOI: 10.1016/j.palaeo.2006.02.008.
  • [29]. Pentecost, A. (1984). The growth of Chara globularis and its relationship to calcium carbonate deposition in Malham Tarn. Field Studies 6: 53-58.
  • [30]. Pukacz, A. & Pełechaty, M. (2013). Spatial structure of vegetation in a small charophyte dominated lake. Biodiversity Research and Conservation 29: 97-104. DOI: 10.2478/biorc-2013-0001.
  • [31]. Pukacz, A., Pełechaty, M. & Petrovic, S. (2011). The use of morphometric characteristics in the identification of two morphologically similar charophytes: Chara globularis and Chara virgata. Biologia, Section Botany. 66: 425-428. DOI: 10.2478/s11756-011-0034-1.
  • [32]. Pukacz, A., Pełechaty, M. & Pełechata, A. (2013). The relation between charophytes and habitat differentiation in temperate lowland lakes. Pol. J. Ecol. 61: 1-14.
  • [33]. Ray, S. Klennel, M., Choo, K.S., Pedersen, M. & Snoeijs, P. (2003). Carbon acquisition mechanisms in Chara tomentosa. Aquat. Bot. 76: 141-154. DOI: 10.1016/s0304-3770(03)00035-4.
  • [34]. Pukacz, A., Pełechaty, M., Frankowski, M., Kowalski, A. & Zwijacz-Koszałka, K. (2014). Seasonality of water chemistry, carbonate production, and biometric features of two species of chara in a shallow clear water lake. The Scientific World Journal, DOI: 10.1155/2014/167631.
  • [35]. Ray, S. Klennel, M., Choo, K.S., Pedersen, M. & Snoeijs, P. (2003). Carbon acquisition mechanisms in Chara tomentosa. Aquat. Bot. 76: 141-154. DOI: 10.1016/s0304-3770(03)00035-4.
  • [36]. Rodrigo, M.A., Rojo, C., Alvarez-Cobelas, M., & Cirujano, S. (2007). Chara hispida beds as a sink of nitrogen: Evidence from growth, nitrogen uptake and decomposition. Aquat. Bot. 87: 7-14. DOI: 10.1016/j.aquabot.2007.01.007.
  • [37]. Schneider, C.S., Garcia, A., Martin-Closas, C. & Chivas, A.R. (2015). The role of charophytes (Charales) in past and present environments: An overview. Aquat. Bot. 120: 2-6. DOI: 10.1016/j.aquabot.2014.10.001.
  • [38]. Siong, K. & Asaeda, T. (2009). Effect of magnesium on charophytes calcification: implications for phosphorus speciation stored in biomass and sediment in Myall Lake (Australia). Hydrobiologia 632: 247-259. DOI: 10.1007/ s10750-009-9846-1.
  • [39]. Smith, F.A., & Walker, N.A., (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3- and to carbon isotopic discrimination. Phytol2ogist 86: 245-259.
  • [40]. Urbaniak, J. & Gąbka, M. (2014). Polish Charophytes - an illustrated guide to identification. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław.
  • [41]. Van den Berg, M.S., Coops, H., Meijer. M.-L., Scheffer, M. & Simons J. (1998). Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In E. Jeppesen, M. Sendergaard, M. Sendergaard & K. Christoffersen (Eds.), The Structuring Role of Submerged Macrophytes in Lakes (pp. 339-352). Springer, New York.
  • [42]. Wetzel, R.G. (1960). Marl encrustation on hydrophytes in several Michigan lakes. Oikos. 11: 223-236.
  • [43]. Wetzel, R.G. (2001). Limnology, Lake and River Ecosystems (3rd ed.). Academic Press, San Diego.
  • [44]. Wood, R.D. & Imahori, K.A. (1965). A revision of the Characeae. Cramer, Weinheim.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-49e01cb1-7a70-4751-80a9-de36a1cb2cd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.