Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 139, nr 3 | 249--275
Tytuł artykułu

Algorithms for Isotropy Groups of Cox-regular Edge-bipartite Graphs

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper can be viewed as a third part of our paper [Fund. Inform. 2015, in press]. Following our Coxeter spectral study in [Fund. Inform. 123(2013), 447-490] and [SIAM J. Discr. Math. 27(2013), 827-854] of the category UBigrn of loop-free edge-bipartite (signed) graphs Δ, with n ≥ 2 vertices, we study a larger category RBigrn of Cox-regular edge-bipartite graphs Δ (possibly with dotted loops), up to the usual Z-congruences ~Z and ≈Z. The positive graphs Δ in RBigrn, with dotted loops, are studied by means of the complex Coxeter spectrum speccΔ ⊂ C, the irreduciblemesh root systems of Dynkin types Bn, n ≥ 2, Cn, n ≥ 3, F4, G2, the isotropy group G1(n, Z)Δ (containing the Weyl group of Δ), and by applying the matrix morsification technique introduced in [J. Pure Appl. Algebra 215(2011), 13-24]. Here we present combinatorial algorithms for constructing the isotropy groups G1(n,Z)Δ. One of the aims of our three paper series is to develop computational tools for the study of the Zcongruence ~Z and the following Coxeter spectral analysis question: "Does the congruence Δ ≈Z Δ' holds, for any pair of connected positive graphsΔ,Δ' ∈ RBigrn such that speccΔ = speccΔ' and the numbers of loops in Δ and Δ' coincide?". For this purpose, we construct in this paper a extended inflation algorithm Δ → DΔ, with DΔ ~Z Δ, that allows a reduction of the question to the Coxeter spectral study of the G1(n,Z)D-orbits in the set MorD ⊂ Mn(Z) of matrix morsifications of the associated edge-bipartite Dynkin graph D = DΔ ∈ RBigrn. We also outline a construction of a numeric algorithm for computing the isotropy group G1(n,Z)Δ of any connected positive edge-bipartite graph Δ in RBigrn. Finally, we compute the finite isotropy group G1(n,Z)D, for each of the Cox-regular edge-bipartite Dynkin graphs D.
Wydawca

Rocznik
Strony
249--275
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
autor
  • Faculty of Mathematics and Computer Science Nicolaus Copernicus University ul. Chopina 12/18, 87-100 Toruń, Poland, skasjan@mat.umk.pl
autor
  • Faculty of Mathematics and Computer Science Nicolaus Copernicus University ul. Chopina 12/18, 87-100 Toruń, Poland, simson@mat.umk.pl
Bibliografia
  • [1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
  • [2] R. Bautista and D. Simson, Torsionless modules over 1-Gorenstein ℓ-hereditary artinian rings, Comm. Algebra 12(1984), 899–936.
  • [3] R. Bocian, M. Felisiak and D. Simson, Numeric and mesh algorithms for the Coxeter spectral study of positive edge-bipartite graphs and their isotropy groups, J. Comp. Appl. Math. 259(2014), 815-827, doi:10.1016/j.cam.2013.07.013.
  • [4] V. M. Bondarenko, V. Futorny, T. Klimchuk, V.V. Sergeichuk and K. Yusenko, Systems of subspaces of a unitary space, Linear Algebra Appl. 438(2013), 2561-2573, doi: 10.1016/j.laa. 2012.10.038.
  • [5] V. Bugaenko, Y. Cherniavsky, T. Nagnibeda, and R. Shwartz, Weighted Coxeter graphs and generalized geometric representations of Coxeter groups, Discrete Applied Mathematics, 2015, in press, doi:10.1016/dam.2014.05.012.
  • [6] D. M. Cvetkovi´c, P. Rowlinson and S. K. Simić, An Introduction to the Theory of Graph Spectra, London Math. Soc. Student Texts 75, Cambridge Univ. Press, Cambridge-New York, 2010.
  • [7] M. Felisiak, Computer algebra technique for Coxeter spectral study of edge-bipartite graphs and matrix morsifications of Dynkin type An, Fund. Inform. 125(2013), 21-49.
  • [8] M. Felisiak and D. Simson, On combinatorial algorithms computing mesh root systems and matrix morsifications for the Dynkin diagram An, Discrete Math. 313(2013), 1358-1367, doi: 10.1016/j.disc.2013.02.003.
  • [9] M. Felisiak and D. Simson, Applications of matrix morsifications to Coxeter spectral study of loop-free edge-bipartite graphs, Discrete Appl. Math. 2015, in press , doi: 10.1016/dam.2014.05.002.
  • [10] M. Gąsiorek, Efficient computation of the isotropy group of a finite graph: a combinatorial approach, SYNASC 2013, IEEE Computer Society, IEEE CPS, Tokyo, 2014, pp. 104-111.
  • [11] M. Gąsiorek and D. Simson, One-peak posets with positive Tits quadratic form, their mesh translation quivers of roots, and programming in Maple and Python, Linear Algebra Appl. 436(2012), 2240–2272, doi:10.1016/j.laa. 2011.10.045.
  • [12] M. Gąsiorek, D. Simson and K. Zając, Algorithmic computation of principal posets using Maple and Python, Algebra Discrete Math. 17(2013), No. 1, 33–69.
  • [13] M. Gąsiorek, D. Simson and K. Zając, On Coxeter type study of non-negative posets using matrix morsifications and isotropy groups of Dynkin and Euclidean diagrams, Europ. J. Comb. 2015, in press, doi:10.1016/j.ejc.2015.02.15.
  • [14] J. P. Gram, On Raekkeudviklinger bestemte ved Hjaelp of de mindste Kvadraters Methode, Kopenhavne, 1879.
  • [15] H. J. von Höhne, On weakly positive unit forms, Comment. Math. Helvetici 63(1988), 312–336.
  • [16] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York Heidelberg, Berlin, 1972.
  • [17] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge Univ. Press, 1990.
  • [18] T. Inohara, Characterization of clusterability of signed graphs in terms of newcombs balance of sentiments, Applied Math. and Comp. 133( 2002), 93-104.
  • [19] M. Kaniecki, J. Kosakowska, P. Malicki, and G. Marczak, A horizontal mesh algorithm for a class of edgebipartite graphs and their matrix morsifications, Fund. Inform. 136(2015), 345-379.
  • [20] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems, Fund. Inform. 127(2015), in press, doi: 10.3233/FI-2015-1194
  • [21] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, II. Application to Coxeter spectral analysis, Fund. Inform. 127(2015), in press, doi:10.3233/FI-2015-1195
  • [22] J. Kosakowska, Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras, Algebra Discrete Math. 4 (2008), 49-79.
  • [23] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119(2012), 149-162, doi: 10.3233/FI-2012-731.
  • [24] S. A. Krugliak and I. V. Livinskyi, Regular orthoscalar representations of the extended Dynkin grapheE8 and ∗-algebra associated with it, Ukrain. Math. Zh. 62(2010), 1213-1233.
  • [25] J. Kunegis, Spectral analysis of signed graphs for clustering, prediction, and visualization, In SDM SIAM 2010, pp. 559-570.
  • [26] G. Marczak, A. Polak and D. Simson, P-critical integral quadratic forms and positive unit forms. An algorithmic approach, Linear Algebra Appl. 433(2010), 1873–1888; doi: 10.1016/j.laa. 2010.06.052.
  • [27] A. Mróz, On the computational complexity of Bongartz′s algorithm, Fund. Inform. 123(2013), 317–329.
  • [28] A. Mróz and J. A. de la Peña, Tubes in derived categories and cyclotomic factors of Coxeter polynomials of an algebra, J. Algebra 420(2014), 242-260.
  • [29] S. Nowak and D. Simson, Locally Dynkin quivers and hereditary coalgebras whose left comodules are direct sums of finite dimensional comodules, Comm. Algebra 30(2002), 405–476.
  • [30] J. A. de la Peña, Algebras whose Coxeter polynomials are products of cyclotomic polynomials, Algebras and Repr. Theory 17(2014), 905-930, doi.10.1007/s10468-013-9424-0.
  • [31] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., Vol. 1099, Springer–Verlag, Berlin–Heidelberg–New York-Tokyo, 1984.
  • [32] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear Algebra Appl. 406(2005), 99–108; doi: 10.1016/j.laa. 2005.03.036.
  • [33] D. Simson, Socle reductions and socle projective modules, J Algebra 103(1986), 16–68.
  • [34] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets, Linear Algebra Appl. 433(2010), 699–717; doi: 10.1016/j.laa. 2010.03.04.
  • [35] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra 215(2011), 13–34, doi: 10.1016/j.jpaa. 2010.02.029.
  • [36] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109(2011), 425–462, doi: 10.3233/FI-2011-603.
  • [37] D. Simson, A Coxeter-Gram classification of simply laced edge-bipartite graphs, SIAM J. Discr. Math. 27(2013), 827-854; doi: 10.1137/110843721.
  • [38] D. Simson, Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform. 123(2013), 447-490., doi: 10.3233/FI-2013-820.
  • [39] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fund. Inform. 124(2013), 309-338, doi: 10.3233/FI-2013-836.
  • [40] D. Simson, Toroidal algorithms for mesh geometries of root orbits of the Dynkin diagram D4, Fund. Inform. 124(2013), 339-364, doi: 10.3233/FI-2013-837
  • [41] D. Simson, Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators, J. Algebra 424(2015), 254-293, doi: 10.10.1016/jalgebra.2014.11.008.
  • [42] D. Simson andM.Wojewódzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83(2008), 389–410.
  • [43] A. P. Wojda, A condition for a graph to contain k-maching, Discrete Math. 276(2004), 375–378.
  • [44] Y. Zhang, Eigenvalues of Coxeter transformations and the structure of the regular components of the Auslander-Reiten quiver, Comm. Algebra 17(1989), 2347-2362.
  • [45] Y. Zhang, The structure of stable components, Canad. J. Math., 43 (1991), 652–672, doi: 10.4153/CJM-1991-038-1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-49d9e004-a09c-45dc-8489-e5211da2c4e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.