Warianty tytułu
Języki publikacji
Abstrakty
Deformation plasticity mechanisms in alloys and compounds may reveal the material’s capacity towards optimal mechanical properties. We conducted a series of molecular dynamics (MD) simulations to investigate plasticity mechanisms due to nanoindentation in pure tungsten, molybdenum, and vanadium body-centered cubic single crystals, as well as the body-centered cubic, equiatomic, random solid solutions (RSS) of tungsten–molybdenum and tungsten–vanadium alloys. Our analysis focuses on a thorough, side-by-side comparison of dynamic deformation processes, defect nucleation, and evolution, along with corresponding stress–strain curves. We also checked the surface morphology of indented samples through atomic shear strain mapping. As expected, the presence of Mo and V atoms in W matrices introduces lattice strain and distortion, increasing material resistance to deformation and slowing down dislocation mobility of dislocation loops with a Burgers vector of 1/2 〈111〉. Our side-by-side comparison displays a remarkable suppression of the plastic zone size in equiatomic W–V RSS, but not in equiatomic W–Mo RSS alloys, displaying a clear prediction for optimal hardening response of equiatomic W–V RSS alloys. If the small-depth nanoindentation plastic response is indicative of overall mechanical performance, it is possible to conceive a novel MD-based pathway towards material design for mechanical applications in complex, multi-component alloys.
Czasopismo
Rocznik
Tom
Strony
37--49
Opis fizyczny
Bibliogr. 66 poz., rys.
Twórcy
- NOMATEN Centre of Excellence, National Center for Nuclear Research, 05-400 Świerk/Otwock, Poland, javier.dominguez@ncbj.gov.pl
autor
- NOMATEN Centre of Excellence, National Center for Nuclear Research, 05-400 Świerk/Otwock, Poland
autor
- NOMATEN Centre of Excellence, National Center for Nuclear Research, 05-400 Świerk/Otwock, Poland
autor
- NOMATEN Centre of Excellence, National Center for Nuclear Research, 05-400 Świerk/Otwock, Poland
- Department of Applied Physics, Aalto University, P.O. Box 11000, 00076 Aalto, Espoo, Finland
Bibliografia
- Alcalá, J., & Esqué-de los Ojos, D. (2010). Reassessing spherical indentation: Contact regimes and mechanical property extractions. International Journal of Solids and Structures, 47(20), 2714–2732. https://doi.org/10.1016/j.ijsolstr.2010.05.025.
- Alcalá, J., Dalmau, R., Franke, O., Biener, M., Biener, J., & Hodge, A. (2012). Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Physical Review Letters, 109, 075502. https://doi.org/10.1103/PhysRevLett.109.075502.
- Arshad, K., Zhao, M.-Y., Yuan, Y., Zhang, Y., Zhao, Z.-H., Wang, B., Zhou, Z.-J., & Lu, G.-H. (2014). Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys. Journal of Nuclear Materials, 455(1–3), 96–100. https://doi.org/10.1016/j.jnucmat.2014.04.019.
- Byggmästar, J., Nordlund, K., & Djurabekova, F. (2021). Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: Defects and segregation. Physical Review B, 104(10), 104101. https://doi.org/10.1103/PhysRevB.104.104101.
- Byggmästar, J., Nordlund, K., & Djurabekova, F. (2022). Simple machine-learned interatomic potentials for complex alloys. Physical Review Materials, 6(8), 083801. https://doi.org/10.1103/PhysRevMaterials.6.083801.
- Chen, Q., Liang, S., Zhang, J., Zhang, X., Wang, Ch., Song, X., & Zhuo, L. (2020). Preparation and characterization of WMo solid solution nanopowders with a wide composition range. Journal of Alloys and Compounds, 823, 153760. https://doi.org/10.1016/j.jallcom.2020.153760.
- Chen, Q., Liang, S., Li, B., Chen, Z., Song, X., & Zhuo, L. (2021). Sol-gel synthesis and characterization of tungsten-molybdenum solid solution nanoparticles. International Journal of Refractory Metals and Hard Materials, 100, 105668. https://doi.org/10.1016/j.ijrmhm.2021.105668.
- Chen, Y., Liao, X., Gao, N., Hu, W., Gao, F., & Deng, H. (2020). Interatomic potentials of W–V and W–Mo binary systems for point defects studies. Journal of Nuclear Materials, 531, 152020. https://doi.org/10.1016/j.jnucmat.2020.152020.
- Das, S., Armstrong, D. E. J., Zayachuk, Y., Liu, W., Xu, R., & Hofmann, F. (2018). The effect of helium implantation on the deformation behaviour of tungsten: X-ray micro-diffraction and nanoindentation. Scripta Materialia, 146, 335–339. https://doi.org/10.1016/j.scriptamat.2017.12.014.
- Domínguez-Gutiérrez, F. J., Byggmästar, J., Nordlund, K., Djurabekova, F., & Toussaint, U., von (2021a). Computational study of crystal defect formation in Mo by a machine learning molecular dynamics potential. Modelling and Simulation in Materials Science and Engineering, 29(5), 055001. https://doi.org/10.1088/1361-651X/abf152.
- Domínguez-Gutiérrez, F. J., Papanikolaou, S., Esfandiarpour, A., Sobkowicz, P., & Alava, M. (2021b). Nanoindentation of single crystalline Mo: Atomistic defect nucleation and thermomechanical stability. Materials Science and Engineering: A, 826, 141912. https://doi.org/10.1016/j.msea.2021.141912.
- Dominguez-Gutierrez, F. J., Ustrzycka, A., Xu, Q. Q., Alvarez-Donado, R., Papanikolaou, S., & Alava, M. J. (2022). Dislocation nucleation mechanisms during nanoindentation of concentrated FeNiCr alloys: unveiling the effects of Cr through molecular simulations. Modelling and Simulation in Materials Science and Engineering, 30(8), 085010. https://doi.org/10.1088/1361-651X/ac9d54.
- Domı́nguez-Gutiérrez, F. J., Grigorev, P., Naghdi, A., Byggmästar, J., Wei, G. Y., Swinburne, T. D., Papanikolaou, S., & Alava, M. J. (2023). Nanoindentation of tungsten: From interatomic potentials to dislocation plasticity mechanisms. Phys. Rev. Mater., 7, 043603. https://doi.org/10.1103/PhysRevMaterials.7.043603.
- Frydrych, K., Dominguez-Gutierrez, F. J., Alava, M. J., & Papanikolaou, S. (2023). Multiscale nanoindentation modelling of concentrated solid solutions: A continuum plasticity model. Mechanics of Materials, 181, 104644. https://doi.org/10.1016/j.mechmat.2023.104644.
- Gaffin, N. D., Ang, C., Milner, J. L., Palomares, K. B., & Zinkle, S. J. (2022). Consolidation behavior of Mo30W alloy using spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 104, 105778. https://doi.org/10.1016/j.ijrmhm.2022.105778.
- Grigorev, P., Goryaeva, A. M., Marinica, M.-C., Kermode, J. R., & Swinburne, T. D. (2023). Calculation of dislocation binding to helium-vacancy defects in tungsten using hybrid ab initio-machine learning methods. Acta Materialia, 247, 118734. https://doi.org/10.1016/j.actamat.2023.118734.
- Guénolé, J., Nöhring, W. G., Vaid, A., Houllé, F., Xie, Z., Prakash, A., & Bitzek, E. (2020). Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS. Computational Materials Science, 175, 109584. https://doi.org/10.1016/j.commatsci.2020.109584.
- Gumbsch, P., Riedle, J., Hartmaier, A., & Fischmeister, H. F. (1998). Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science, 282(5392), 1293–1295. https://doi.org/10.1126/science.282.5392.1293.
- Huo, W., Fang, F., Liu, X., Tan, S., Xie, Z., & Jiang, J. (2019). Remarkable strain-rate sensitivity of nanotwinned CoCrFeNi alloys. Applied Physics Letters, 114(10), 101904. https://doi.org/10.1063/1.5088921.
- Jiang, D., Zhou, Q., Xue, L., Wang, T., & Hu, J. (2018). First-principles study the phase stability and mechanical properties of binary W-Mo alloys. Fusion Engineering and Design, 130, 56–61. https://doi.org/10.1016/j.fusengdes.2018.03.050.
- Jiang, D., Zhou, Q., Liu, W., Wang, T., & Hu, J. (2019). First-principles study the structures and mechanical properties of binary W-V alloys. Physica B: Condensed Matter, 552, 165–169. https://doi.org/10.1016/j.physb.2018.10.005.
- Johnson, K. L. (1987). Contact Mechanics. Cambridge University Press.
- Karimi, K., Salmenjoki, H., Mulewska, K., Kurpaska, L., Kosińska, A., Alava, M. J., & Papanikolaou, S. (2023). Prediction of steel nanohardness by using graph neural networks on surface polycrystallinity maps. Scripta Materialia, 234, 115559. https://doi.org/10.1016/j.scriptamat.2023.115559.
- Kramynin, S. P. (2022). Theoretical study of concentration and size dependencies of the properties of Mo–W alloy. Solid State Sciences, 124, 106814. https://doi.org/10.1016/j.solidstatesciences.2022.106814.
- Kurpaska, L., Dominguez-Gutierrez, F. J., Zhang, Y., Mulewska, K., Bei, H., Weber, W. J., Kosińska, A., Chrominski, W., Jozwik, I., Alvarez-Donado, R., Papanikolaou, S., Jagielski, J., & Alava, M. (2022). Effects of Fe atoms on hardening of a nickel matrix: Nanoindentation experiments and atom-scale numerical modeling. Materials & Design, 217, 110639. https://doi.org/10.1016/j.matdes.2022.110639.
- Lan, X., Zhang, H., Li, Z.-B., & Zhang, G.-H. (2022). Preparation of fine-grained MoW solid solution alloys with excellent performances. Materials Characterization, 191, 112140. https://doi.org/10.1016/j.matchar.2022.112140.
- Li, T. L., Gao, Y. F., Bei, H., & George, E. P. (2011). Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals. Journal of the Mechanics and Physics of Solids, 59(6), 1147–1162. https://doi.org/10.1016/j.jmps.2011.04.003.
- Li, Z., Gao, S., Brand, U., Hiller, K., & Wolff, H. (2020). A MEMS nanoindenter with an integrated AFM cantilever gripper for nanomechanical characterization of compliant materials. Nanotechnology, 31(30), 305502. https://doi.org/10.1088/1361-6528/ab88ed.
- Liu, G., Zhang, G. J., Jiang, F., Ding, X. D., Sun, Y. J., Sun, J., & Ma, E. (2013). Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Materials, 12(4), 344–350. https://doi.org/10.1038/nmat3544.
- Mulewska, K., Dominguez-Gutierrez, F. J., Kalita, D., Byggmäestar, J., Wei, G. Y., Chromiński, W., Papanikolaou, S., Alava, M. J., Kurpaska, Ł., & Jagielski, J. (2023a). Self–ion irradiation of high purity iron: Unveiling plasticity mechanisms through nanoindentation experiments and large-scale atomistic simulations. Journal of Nuclear Materials, 586, 154690. https://doi.org/10.1016/j.jnucmat.2023.154690.
- Mulewska, K., Rovaris, F., Dominguez-Gutierrez, F. J., Huo, W. Y., Kalita, D., Jozwik, I., Papanikolaou, S., Alava, M. J., Kurpaska, L., & Jagielski, J. (2023b). Self-ion irradiation effects on nanoindentation-induced plasticity of crystalline iron: A joint experimental and computational study. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 539, 55–61. https://doi.org/10.1016/j.nimb.2023.03.004.
- Muzyk, M., Nguyen-Manh, D., Kurzydłowski, K. J., Baluc, N. L., & Dudarev, S. L. (2011). Phase stability, point defects, and elastic properties of W-V and W-Ta alloys. Physical Review B, 84(10), 104115. https://doi.org/10.1103/PhysRevB.84.104115.
- Naghdi, A., Dominguez-Gutierrez, F. J., Huo, W. Y., Karimi, K., & Papanikolaou, S. (2022). Dynamic nanoindentation and short-range order in equiatomic NiCoCr medium entropy alloy lead to novel density wave ordering. arXiv. https://doi.org/10.48550/arXiv.2211.05436.
- Ohser-Wiedemann, R., Martin, U., Müller, A., & Schreiber, G. (2013). Spark plasma sintering of Mo–W powders prepared by mechanical alloying. Journal of Alloys and Compounds, 560, 27–32. https://doi.org/10.1016/j.jallcom.2013.01.142.
- Ojha, A., Sehitoglu, H., Patriarca, L., & Maier, H. J. (2014). Twin nucleation in Fe-based bcc alloys – modeling and experiments. Modelling and Simulation in Materials Science and Engineering, 22(7), 075010. https://doi.org/10.1088/0965-0393/22/7/075010.
- Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583. https://doi.org/10.1557/JMR.1992.1564.
- Papanikolaou, S., Dimiduk, D. M., Choi, W., Sethna, J. P., Uchic, M. D., Woodward, Ch. F., & Zapperi, S. (2012). Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator. Nature, 490(7421), 517–521. https://doi.org/10.1038/nature11568.
- Papanikolaou, S., Song, H., & Van der Giessen, E. (2017). Obstacles and sources in dislocation dynamics: Strengthening and statistics of abrupt plastic events in nanopillar compression. Journal of the Mechanics and Physics of Solids, 102, 17–29. https://doi.org/10.1016/j.jmps.2017.02.004.
- Pathak, S., & Kalidindi, S. R. (2015). Spherical nanoindentation stress–strain curves. Materials Science and Engineering: R: Reports, 91, 1–36. https://doi.org/10.1016/j.mser.2015.02.001.
- Pathak, S., Riesterer, J. L., Kalidindi, S. R., & Michler, J. (2014). Understanding pop-ins in spherical nanoindentation. Applied Physics Letters, 105(16), 161913. https://doi.org/10.1063/1.4898698.
- Pitts, R. A., Carpentier, S., Escourbiac, F., Hirai, T., Komarov, V., Lisgo, S., Kukushkin, A. S., Loarte, A., Merola, M., Sashala Naik, A., Mitteau, R., Sugihara, M., Bazylev, B., & Stangeby, P. C. (2013). A full tungsten divertor for ITER: Physics issues and design status. Journal of Nuclear Materials, 438, S48–S56. https://doi.org/10.1016/j.jnucmat.2013.01.008.
- Pöhl, F. (2019). Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Scientific Reports, 9(1), 15350. https://doi.org/10.1038/s41598-019-51644-5.
- Remington, T. P., Ruestes, C. J., Bringa, E. M., Remington, B. A., Lu, C. H., Kad, B., & Meyers, M. A. (2014). Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Materialia, 78, 378–393. https://doi.org/10.1016/j.actamat.2014.06.058.
- Sahoo, P. K., Srivastava, S. K., Kamal, S. S. K., & Durai, L. (2015). Consolidation behavior of W–20–40 wt.% Mo nanoalloys synthesized by thermal decomposition method. International Journal of Refractory Metals and Hard Materials, 51, 124–129. https://doi.org/10.1016/j.ijrmhm.2015.03.008.
- Salonen, E., Järvi, T., Nordlund, K., & Keinonen, J. (2003). Effects of the surface structure and cluster bombardment on the self-sputtering of molybdenum. Journal of Physics: Condensed Matter, 15(34), 5845. https://doi.org/10.1088/0953-8984/15/34/314.
- Schuh, Ch. A. (2006). Nanoindentation studies of materials. Materials Today, 9(5), 32–40. https://doi.org/10.1016/S1369-7021(06)71495-X.
- Song, H., Dimiduk, D., & Papanikolaou, S. (2019a). Universality class of nanocrystal plasticity: Localization and self-organization in discrete dislocation dynamics. Physical Review Letters, 122(17), 178001. https://doi.org/10.1103/PhysRevLett.122.178001.
- Song, H., Yavas, H., Van der Giessen, E., & Papanikolaou, S. (2019b). Discrete dislocation dynamics simulations of nanoindentation with pre-stress: Hardness and statistics of abrupt plastic events. Journal of the Mechanics and Physics of Solids, 123, 332–347. https://doi.org/10.1016/j.jmps.2018.09.005.
- Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1). https://doi.org/10.1088/0965-0393/18/1/015012.
- Stukowski, A., Bulatov, V. V., & Arsenlis, A. (2012). Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 20(8), 085007. https://doi.org/10.1088/0965-0393/20/8/085007.
- Tao, H., Li, J., Li, J., Hou, Z., Yang, X., & Fan, L.-Z. (2022). Metallic phase W0.9Mo0.1S2 for high-performance anode of sodium ion batteries through suppressing the dissolution of polysulfides. Journal of Energy Chemistry, 66, 356–365. https://doi.org/10.1016/j.jechem.2021.08.026.
- Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., Veld, P. J., in ’t , Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, Ch., & Plimpton, S. J. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/https://doi.org/10.1016/j.cpc.2021.108171.
- Turchi, P., Drchal, V., Kudrnovskỳ, J., Colinet, C., Kaufman, L., & Liu, Z.-K. (2005). Application of ab initio and CALPHAD thermodynamics to Mo-Ta-W alloys. Physical Review B, 71(9), 094206. https://doi.org/10.1103/PhysRevB.71.094206.
- Varillas, J. (2019). A Molecular Dynamics Study of Nanocontact Plasticity and Dislocation Avalanches in FCC and BCC Crystals [Ph.D. thesis]. University of West Bohemia. https://doi.org/10.13140/RG.2.2.13904.87040.
- Varillas, J., Očenášek, J., Torner, J., & Alcalá, J. (2017). Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip trace and pileup topography analyses. Acta Materialia, 125, 431–441. https://doi.org/10.1016/j.actamat.2016.11.067.
- Wang, X., Xu, S., Jian, W.-R., Li, X.-G., Su, Y., & Beyerlein, I. J. (2021). Generalized stacking fault energies and peierls stresses in refractory body-centered cubic metals from machine learning-based interatomic potentials. Computational Materials Science, 192, 110364. https://doi.org/10.1016/j.commatsci.2021.110364.
- Wei, G., Byggmästar, J., Cui, J., Nordlund, K., Ren, J., & Djurabekova, F. (2023). Effects of lattice and mass mismatch on primary radiation damage in w-ta and w-mo binary alloys. Journal of Nuclear Materials, 583, 154534. https://doi.org/10.1016/j.jnucmat.2023.154534.
- Wurster, S., Gludovatz, B., Hoffmann, A., & Pippan, R. (2011). Fracture behaviour of tungsten–vanadium and tungsten–tantalum alloys and composites. Journal of Nuclear Materials, 413(3), 166–176. https://doi.org/10.1016/j.jnucmat.2011.04.025.
- Wyszkowska, E., Mieszczynski, C., Kurpaska, Ł., Azarov, A., Jóźwik, I., Kosińska, A., Chromiński, W., Diduszko, R., Huo, W. Y., Cieślik, I., & Jagielski, J. (2023). Tuning heterogeneous ion-radiation damage by composition in NiFe binary single crystals. Nanoscale, 15, 4870–4881. https://doi.org/10.1039/D2NR06178C.
- Xiong, K., Liu, X., & Gu, J. (2014). Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model. Modelling and Simulation in Materials Science and Engineering, 22(8), 085013. https://doi.org/10.1088/0965-0393/22/8/085013.
- Xiong, K., Lu, H., & Gu, J. (2016). Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal. Computational Materials Science, 115, 214–226. https://doi.org/10.1016/j.commatsci.2015.12.045.
- Xu, Q., Zaborowska, A., Mulewska, K., Huo, W., Karimi, K., Domínguez-Gutiérrez, F. J., Kurpaska, Ł., Alava, M. J., & Papanikolaou, S. (2023). Atomistic insights into nanoindentation-induced deformation of α-Al2O3 single crystals. Vacuum, 219(A), 112733. https://doi.org/10.1016/j.vacuum.2023.112733.
- Xu, R.-G., Song, H., Leng, Y., & Papanikolaou, S. (2021). A molecular dynamics simulations study of the influence of prestrain on the pop-in behavior and indentation size effect in cu single crystals. Materials, 14(18), 5220. https://doi.org/10.3390/ma14185220.
- Xu, S., Hwang, E., Jian, W.-R., Su, Y., & Beyerlein, I. J. (2020). Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys. Intermetallics, 124, 106844. https://doi.org/10.1016/j.intermet.2020.106844.
- Yin, B., Maresca, F., & Curtin, W. A. (2020). Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys. Acta Materialia, 188, 486–491. https://doi.org/10.1016/j.actamat.2020.01.062.
- Yu, H., Das, S., Yu, H., Karamched, P., Tarleton, E., & Hofmann, F. (2020). Orientation dependence of the nano-indentation behaviour of pure tungsten. Scripta Materialia, 189, 135–139. https://doi.org/10.1016/j.scriptamat.2020.08.014.
- Zhang, X., Tang, J., Deng, L., Zhong, G., Liu, X., Li, Y., Deng, H., & Hu, W. (2017). The effects of interstitial impurities on the mechanical properties of vanadium alloys: A first-principles study. Journal of Alloys and Compounds, 701, 975–980. https://doi.org/10.1016/j.jallcom.2017.01.135.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-49d9d666-cf8c-4686-999e-44ca23e6b27e