Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 72, nr 4 | art. no. e150203
Tytuł artykułu

An adaptive energy management approach for battery-supercapacitor hybrid energy storage system

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy storage systems (ESS) are indispensable in daily life and have two types that can offer high energy and high power density. Hybrid energy storage systems (HESS) are obtained by combining two or more energy storage units to benefit both types. Energy management systems (EMS) are essential in ensuring the reliability, high performance, and efficiency of HESS. One of the most critical parameters for EMS is the battery state of health (SoH). Continuous monitoring of the SoH provides essential information regarding the system status, detects unusual performance degradations and enables planned maintenance, prevents system failures, helps keep efficiency at a consistently high level, and helps ensure energy security by reducing downtime. The SoH parameter depends on parameters such as depth of discharge (DoD), charge and discharge rate (C-rate), and temperature. Optimal values of these parameters directly affect the lifetime and operating performance of the battery. The proposed adaptive energy management system (AEMS) uses the SoH parameter of the battery as the control input. It provides optimal control by dynamically updating the C-rate and DoD parameters. In addition, the supercapacitor integrated into the system with filter-based power separation prevents deep discharge of the batteries. Under the proposed AEMS control, HESS has been observed to generate 6.31% more energy than a system relying solely on batteries. This beneficial relationship between supercapacitors and batteries efficiently managed by AEMS opens new possibilities for advanced energy management in applications ranging from electric vehicles to renewable energy storage systems.
Wydawca

Rocznik
Strony
art. no. e150203
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Ciftlikkoy 33100, Mersin, Turkey, gyuksek@mersin.edu.tr
  • Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Ciftlikkoy 33100, Mersin, Turkey
Bibliografia
  • [1] K. Obaideen et al., “Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs),” Sustainability, vol. 15, no. 2, pp. 1418–1453, 2023, doi: 10.3390/su15021418.
  • [2] H. Feng, “The Impact of Renewable Energy on Carbon Neutrality for the Sustainable Environment: Role of Green Finance and Technology Innovations,” Front. Environ. Sci., vol. 10, pp. 1–16, 2022, doi: 10.3389/fenvs.2022.924857.
  • [3] X.H. Chen, K. Tee, M. Elnahass, and R. Ahmed, “Assessing the environmental impacts of renewable energy sources: A case study on air pollution and carbon emissions in China,” J. Environ. Manage., vol. 345, pp. 118525–118537, 2023, doi: 10.1016/j.jenvman.2023.118525.
  • [4] H. Dissanayake et al., “Nexus between carbon emissions, energy consumption, and economic growth: Evidence from global economies,” PLoS One, vol. 18, no. 6, p. 0287579, Jun. 2023, doi: 10.1371/journal.pone.0287579.
  • [5] E. Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki, and Muhibbuddin, “A critical review of the integration of renewable energy sources with various technologies,” Prot. Control Mod. Power Syst., vol. 6, no. 1, pp. 3–20, 2021, doi: 10.1186/s41601-021-00181-3.
  • [6] C. Wu, X.-P. Zhang, and M. Sterling, “Solar power generation intermittency and aggregation,” Sci. Rep., vol. 12, no. 1, pp. 1–11, 2022, doi: 10.1038/s41598-022-05247-2.
  • [7] K. Abaci, V. Yamaçli, and Z. Chen, “Voltage stability improvement with coordinated ULTC–STATCOM controller and VSCHVDC in high wind penetration cases,” Electr. Eng., vol. 103, no. 2, pp. 837–851, 2021, doi: 10.1007/s00202-020-01127-y.
  • [8] N. Muzaffar, A.M. Afzal, H.H. Hegazy, and M.W. Iqbal, “Recent advances in two-dimensional metal-organic frameworks as an exotic candidate for the evaluation of redox-active sites in energy storage devices,” J. Energy Storage, vol. 64, pp. 107142, 2023, doi: 10.1016/j.est.2023.107142.
  • [9] T. Costa et al., “Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid,” Energies (Basel), vol. 16, no. 3, pp. 1175–1198 2023, doi: 10.3390/en16031175.
  • [10] H.M. Amine et al., “Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids,” Energy, vol. 282, p. 128310, 2023, doi: 10.1016/j.energy.2023.128310.
  • [11] C. Pan, H. Fan, R. Zhang, J. Sun, Y. Wang, and Y. Sun, “An improved multi-timescale coordinated control strategy for an integrated energy system with a hybrid energy storage system,” Appl. Energy, vol. 343, p. 121137, 2023, doi: 10.1016/j.apenergy.2023.121137.
  • [12] M.R. Çorapsiz and H. Kahveci, “A study on Li-ion battery and supercapacitor design for hybrid energy storage systems,” Energy Storage, vol. 5, no. 1, pp. 386–394, 2023, doi: 10.1002/est2.386.
  • [13] A.A. Abdalla, M.S. El Moursi, T.H. El-Fouly, and K.H. Al Hosani, “A Novel Adaptive Power Smoothing Approach for PV Power Plant with Hybrid Energy Storage System,” IEEE Trans. Sustain. Energy, vol. 14, no. 3, pp. 1457–1473, 2023, doi: 10.1109/TSTE.2023.3236634.
  • [14] R. Powade and Y. Bhateshvar, “Design of semi-actively controlled battery-supercapacitor hybrid energy storage system,” Mater. Today Proc., vol. 72, pp. 1503–1509, 2023, doi: 10.1016/j.matpr.2022.09.378.
  • [15] K.C.S. Lakshmi and B.Vedhanarayanan, “High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices,” Batteries, vol. 9, no. 4, pp. 902–946, 2023, doi: 10.3390/batteries9040202.
  • [16] G. Yüksek, Y. Muratoğlu, and A. Alkaya, “Modelling of supercapacitor by using parameter estimation method for energy storage system,” Adv. Eng. Sci., vol. 2, pp. 67–73, Mar. 2022.
  • [17] M. Wieczorek, M. Lewandowski, and W. Jefimowski, “Cost comparison of different configurations of a hybrid energy storage system with battery-only and supercapacitor-only storage in an electric city bus,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 6, pp. 1095–1106, 2019, doi: 10.24425/bpasts.2019.131567.
  • [18] C. Kök and A. Alkaya, “Investigation of Thermal Behavior of Lithium-Ion Batteries under Different Loads,” Eur. Mech. Sci., vol. 4, no. 3, pp. 96–102, 2020, doi: 10.26701/ems.635707.
  • [19] B. Tepe, S. Jablonski, H. Hesse, and A. Jossen, “Lithiumion battery utilization in various modes of e-transportation,” eTransportation, vol. 18, p. 100274, 2023, doi: 10.1016/j.etran.2023.100274.
  • [20] X. Li, M. Li, M. Habibi, N. Najaafi, and H. Safarpour, “Optimization of hybrid energy management system based on high-energy solid-state lithium batteries and reversible fuel cells,” Energy, vol. 283, p. 128454, 2023, doi: 10.1016/j.energy.2023.128454.
  • [21] G. Yüksek and A. Alkaya, “A novel state of health estimation approach based on polynomial model for lithium-ion batteries,” Int. J. Electrochem. Sci., vol. 18, no. 5, p. 100111, 2023, doi: 10.1016/j.ijoes.2023.100111.
  • [22] M. Hossain, M.E. Haque, and M.T. Arif, “Online Model Parameter and State of Charge Estimation of Li-Ion Battery Using Unscented Kalman Filter Considering Effects of Temperatures and C-Rates,” IEEE Trans. Energy Conv., vol. 37, no. 4, pp. 2498–2511, 2022, doi: 10.1109/TEC.2022.3178600.
  • [23] A.T. Elsayed, C.R. Lashway, and O.A. Mohammed, “Advanced Battery Management and Diagnostic System for Smart Grid Infrastructure,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 897–905, 2016, doi: 10.1109/TSG.2015.2418677.
  • [24] G. Yüksek and A. Alkaya, “Effect of the Depth of Discharge and C-Rate on Battery Degradation and Cycle Life,” in 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), 2023, doi: 10.1109/ELECO60389.2023.10415967.
  • [25] M. Robayo, M. Mueller, S. Sharkh, and M. Abusara, “Assessment of supercapacitor performance in a hybrid energy storage system with an EMS based on the discrete wavelet transform,” J. Energy Storage, vol. 57, p. 106200, 2023, doi: 10.1016/j.est.2022.106200.
  • [26] S.K. Kollimalla, A. Ukil, H.B. Gooi, U. Manandhar, and N.R. Tummuru, “Optimization of Charge/Discharge Rates of a Battery Using a Two-Stage Rate-Limit Control,” IEEE Trans. Sustain. Energy, vol. 8, no. 2, pp. 516–529, 2017, doi: 10.1109/TSTE.2016.2608968.
  • [27] Y. Basheer, S.M. Qaisar, A. Waqar, F. Lateef, and A. Alzahrani, “Investigating the Optimal DOD and Battery Technology for Hybrid Energy Generation Models in Cement Industry Using HOMER Pro,” IEEE Access, vol. 11, pp. 81331–81347, 2023, doi: 10.1109/ACCESS.2023.3300228.
  • [28] A. Bavand, S.A. Khajehoddin, M. Ardakani, and A. Tabesh, “Online Estimations of Li-Ion Battery SOC and SOH Applicable to Partial Charge/Discharge,” IEEE Trans. Transp. Electrif., vol. 8, no. 3, pp. 3673–3685, 2022, doi: 10.1109/TTE.2022.3162164.
  • [29] L. Timilsina, P.R. Badr, P.H. Hoang, G. Ozkan, B. Papari, and C.S. Edrington, “Battery Degradation in Electric and Hybrid Electric Vehicles: A Survey Study,” IEEE Access, vol. 11, pp. 42431–42462, 2023, doi: 10.1109/ACCESS.2023.3271287.
  • [30] M.S. Wasim, S. Habib, M. Amjad, A.R. Bhatti, E.M. Ahmed, and M.A. Qureshi, “Battery-Ultracapacitor Hybrid Energy Storage System to Increase Battery Life Under Pulse Loads,” IEEE Access, vol. 10, pp. 62173–62182, 2022, doi: 10.1109/ACCESS.2022.3182468.
  • [31] S. Xie, S. Qi, and K. Lang, “A Data-Driven Power Management Strategy for Plug-In Hybrid Electric Vehicles Including Optimal Battery Depth of Discharging,” IEEE Trans. Ind. Inform., vol. 16, no. 5, pp. 3387–3396, 2020, doi: 10.1109/TII.2019.2917468.
  • [32] Z. Zhang, K. Wen, and W. Sun, “Optimization and sustainability analysis of a hybrid diesel-solar-battery energy storage structure for zero energy buildings at various reliability conditions,” Sustain. Energy Technol. Assess., vol. 55, p. 102913, 2023, doi: 10.1016/j.seta.2022.102913.
  • [33] O. Ibrahim et al., “Development of fuzzy logic-based demandside energy management system for hybrid energy sources,” Energy Conv. Manag.-X, vol. 18, p. 100354, 2023, doi: 10.1016/j.ecmx.2023.100354.
  • [34] T.H.B. Huy, H.T. Dinh, and D. Kim, “Multi-objective framework for a home energy management system with the integration of solar energy and an electric vehicle using an augmented 𝜀-constraint method and lexicographic optimization,” Sustain. Cities Soc., vol. 88, p. 104289, 2023, doi: 10.1016/j.scs.2022.104289.
  • [35] S.-J. Park et al., “Depth of discharge characteristics and control strategy to optimize electric vehicle battery life,” J. Energy Storage, vol. 59, p. 106477, 2023, doi: 10.1016/j.est.2022.106477.
  • [36] M.I. Hlal, V.K. Ramachandaramurthy, A. Sarhan, A. Pouryekta, and U. Subramaniam, “Optimum battery depth of discharge for off-grid solar PV/battery system,” J. Energy Storage, vol. 26, p. 100999, 2019, doi: 10.1016/j.est.2019.100999.
  • [37] L. Setyawan, J. Xiao, and P. Wang, “Optimal Depth-of-Discharge range and capacity settings for battery energy storage in microgrid operation,” in 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), 2017, pp. 1–7. doi: 10.1109/ACEPT.2017.8168560.
  • [38] S.N. Motapon, E. Lachance, L.-A. Dessaint, and K. Al-Haddad, “A Generic Cycle Life Model for Lithium-Ion Batteries Based on Fatigue Theory and Equivalent Cycle Counting,” IEEE Open J. Ind. Electron. Soc., vol. 1, pp. 207–217, 2020, doi: 10.1109/OJIES.2020.3015396.
  • [39] T. Białoń, R. Niestrój, W. Skarka, and W. Korski, “HPPC Test Methodology Using LFP Battery Cell Identification Tests as an Example,” Energies (Basel), vol. 16, no. 17, pp. 6239–6259, 2023, doi: 10.3390/en16176239.
  • [40] M. Dubarry and A. Devie, “Battery durability and reliability under electric utility grid operations: Representative usage aging and calendar aging,” J. Energy Storage, vol. 18, pp. 185–195, 2018, doi: 10.1016/j.est.2018.04.004.
  • [41] A. Devie, G. Baure, and M. Dubarry, “Intrinsic Variability in the Degradation of a Batch of Commercial 18650 Lithium-Ion Cells,” Energies (Basel), vol. 11, no. 5, pp. 1031–1044, 2018, doi: 10.3390/en11051031.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-49ccdeff-e237-466f-9482-13ddb0659fb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.