Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 28, Iss. 2 | 90--98
Tytuł artykułu

Implementation of the Sievert integral for the calculation of dose distribution around the BEBIG Co-60 high dose rate brachytherapy source

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: In radiotherapy, a computerized treatment planning system (TPS) is used for performing treatment planning to estimate the dose distribution within a patient. To simplify the dose calculation, mathematical algorithms are employed. TG43 formalism is widely used for brachytherapy. Before the implementation of a particular dose calculation algorithm in clinical practice, it is imperative to acknowledge the limitations and uncertainties associated with the algorithm. Regarding this, outputs of the algorithm are compared to measurements or dose calculation approaches using simple source placement geometries. The manual dose calculation method has to be robust, straightforward, and devoid of complexities to reduce the likelihood of committing errors in the dose calculation process. A lot of manual dose calculation approaches have been proposed for Brachytherapy sources, but one needs to ascertain their reliability. Material and methods: Considering this, the output of an HDRplus treatment planning system dedicated to brachytherapy treatment planning and using the TG43 formalism to calculate the dose distribution around a BEBIG Co-60 source was validated with Sievert integral dose calculation approach. Simple source placement geometries were created with the TPS using the universal applicator, LLA1200-20, selected from the applicator library, and doses at various equidistant points from the applicator calculated with the TPS and the Sievert integral. Various steps to enhance the efficacy of the Sievert integral approach have been outlined. Results: The doses compared favourably well with deviations ranging from 0.03 – 10.51% (mean of 3.13%), and 0.03 – 5.63% (mean of 2.55%) for angles along the perpendicular bisector of the source, ranging from 0° < θ < 70° and 0° < θ < 48°, respectively. Conclusions: The Sievert integral breaks down at angles: θ ≥ 60°, and therefore, neglecting large angles, the Sievert integral would be an efficient, effective, and valid tool for quality control of the HDRplus TPS for the Co-60 source.
Wydawca

Rocznik
Strony
90--98
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Medical Physics, Graduate School of Nuclear and Allied Sciences, University of Ghana, Ghana, castroldumenya@yahoo.com
  • Department of Medical Physics, Graduate School of Nuclear and Allied Sciences, University of Ghana, Ghana
  • Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Ghana
  • Department of Medical Physics, Graduate School of Nuclear and Allied Sciences, University of Ghana, Ghana
  • National Center for Radiotherapy and Nuclear Medicine, Korle Bu Teaching Hospital, Ghana
autor
  • National Center for Radiotherapy and Nuclear Medicine, Korle Bu Teaching Hospital, Ghana
  • Department of Medical Physics, Graduate School of Nuclear and Allied Sciences, University of Ghana, Ghana
  • Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission, Ghana
  • Radiological Applications Department, Nuclear Regulatory Authority, Ghana
  • Department of Medical Physics, Graduate School of Nuclear and Allied Sciences, University of Ghana, Ghana
  • Department of Medical Physics, Graduate School of Nuclear and Allied Sciences, University of Ghana, Ghana
Bibliografia
  • 1. Papanikolaou N, Stathakis S. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams. Medical Physics. 2009;36(10):4765-4775. https://doi.org/10.1118/1.3213523
  • 2. Kyeremeh P, Addison E, Acquah G, et al. Implementation of 3-D Anisotropy Corrected Fast Fourier Transform Dose Calculation around Brachytherapy Seeds. International Journal of Science and Technology. 2012;2(3):116-124
  • 3. Animesh. Advantages of multiple algorithm support in treatment planning system for external beam dose calculations. Journal of Cancer Research and Therapeutics. 2005;1(1):12-20. https://doi.org/10.4103/0973-1482.16085
  • 4. Oelkfe U, Scholz C. Dose Calculation Algorithms. In: New Technologies in Radiation Oncology. Springer; 2006:187-196. https://doi.org/10.1007/3-540-29999-8_15
  • 5. Nani EK, Akaho EHK, Kyere AWK, et al. Approximating Sievert Integrals to Monte Carlo Methods to Calculate Dose Rate Distributions around P192PIr Brachytherapy Source. Journal of Applied Science and Technology. 2009;14(1-2):27-31. https://doi.org/10.4314/jast.v14i1-2.44320
  • 6. Khan FM. The Physics of Radiation Therapy. 3rd ed. Lippincott Williams & Wilkins; 2003:369-377
  • 7. Daskalov GM, Löffler E, Williamson JF. Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source. Medical Physics. 1998;25(11):2200-2208. https://doi.org/10.1118/1.598418
  • 8. Cohen GN, Amols HI, Zaider M. An independent dose-to-point calculation program for the verification of high-dose-rate brachytherapy treatment planning. International Journal of Radiation Oncology, Biology, Physics. 2000;48(4):1251-1258. https://doi.org/10.1016/s0360-3016(00)00725-2
  • 9. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Medical Physics. 1995;22(2):209-234. https://doi.org/10.1118/1.597458
  • 10. Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Medical Physics. 2004;31(3):633-674. https://doi.org/10.1118/1.1646040
  • 11. Kyeremeh PO. Three-Dimensional Implementation of Anisotropy Corrected Fast Fourier Transform Dose Calculation around Brachytherapy Seeds. (MPhil Thesis). University of Ghana, Accra, Ghana. Published online 2011
  • 12. Williamson JF, Morin RL, Khan FM. Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry. Physics in Medicine and Biology. 1983;28(9):1021-1032. https://doi.org/10.1088/0031-9155/28/9/002
  • 13. International Commission on Radiation Units and Measurements. Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures. International Commission on Radiation Units and Measurements ICRU Report 24; 1976
  • 14. Zehtabian M, Sina S, Rivard MJ, Meigooni AS. Evaluation of BEBIG HDR 60 Co system for non-invasive image-guided breast brachytherapy. Journal of Contemporary Brachytherapy. 2015;7(6):469-478. https://doi.org/10.5114/jcb.2015.56766
  • 15. Bhola S, T Palani Selvam, Sridhar S, Vishwakarma RS. An analytic approach to the dosimetry of a new BEBIG 60 Co high-dose-rate brachytherapy source. Journal of Medical Physics. 2012;37(3):129. Accessed January 9, 2022. https://dx.doi.org/10.4103%2F0971-6203.99228
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-49b7fcaf-8b2c-4b4e-97e7-4ee52a6a44c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.