Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 1 | 353--374
Tytuł artykułu

Analytical and experimental study on micro-grinding surface-generated mechanism of DD5 single-crystal superalloy using micro-diamond pencil grinding tool

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single-crystal superalloy is characterized by no grain boundary and widely used in the aviation and aerospace industry due to its high creep strength and high thermal fatigue resistance, especially applications in aero engine necessitate numerous micro-scale structures made of single-crystal superalloy material with high-dimensional accuracy and surface quality. Micro-grinding as one of micro-precision machining technology is capable to fabricate micro-parts and structures with high machining precision and quality. In this work, a series of diamond micro-pencil grinding tool (MPGT) with diameter ranged from about 100 to 800 μm are firstly prepared by hybrid processes. The surface-generated mechanism of micro-grinding process associated with effects of length ratio of rubbing, ploughing and chip forming were explored based on analytical and experimental investigations. In addition, a novel analytical force model for the DD5 material machined by MPGT is developed considering variable size effect under different length proportion, protrusion height distribution of MPGT and material mechanical properties, which can more accurately agree well with the measured results compared with the traditional micro-grinding force model. This study enabled an in-depth understanding of mechanical behaviour characteristics, surface formation and material removal mechanism under microscopic scale of single-crystal superalloy involved in micro-grinding.
Wydawca

Rocznik
Strony
353--374
Opis fizyczny
Bibliogr. 45 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China, sy547515291@163.com
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China, gongyd@mail.neu.edu.cn
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
Bibliografia
  • [1] Wen ZX, Liang JW, Liu CY, Pei HQ, Wen SF, Yue ZF. Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. Int J Mech Sci. 2018;141:276–89.
  • [2] Sun Y, Gong YD, Wen XL, Yin GQ, Meng FT. Micro milling characteristics of LS-WEDM fabricated helical and corrugated micro end mill. Int J Mech Sci. 2020;167:105277.
  • [3] Zhu LD, Liu CF. Recent progress of chatter prediction, detection and suppression in milling. Mech Syst Signal Pr. 2020;143:106840.
  • [4] Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tool Manuf 103594.
  • [5] Li W, Zhou ZX, Yin SH, Ren YH. Research status analysis and review of micro-grinding technology and micro-grinding machines. J Mech Eng. 2016;52(17):10–9.
  • [6] Liu YM, Yang TY, He Z, Li JY. Analytical modeling of grinding process in rail profile correction considering grinding pattern. Arch Civ Mech Eng. 2018;18(2):669–78.
  • [7] Park HW. Development of micro-grinding mechanics and machine tools. Atlanta: Georgia Institute of Technology; 2008.
  • [8] Sun C, Xiu S, Hong Y, Kong X, Lu Y. Prediction on residual stress with mechanical-thermal and transformation coupled in DGH. J Mech Sci Technol. 2020;179:105629.
  • [9] Ding Z, Sun G, Guo M, Jiang X, Liang SY. Effect of phase transition on micro-grinding- induced residual stress. J Mater Process Technol. 2020;281:116647.
  • [10] Setti D, Arrabiyeh PA, Kirsch B, Heintz M, Aurich JC. Analytical and experimental investigations on the mechanisms of surface generation in micro grinding. Int J Mach Tool Manuf. 2020;149:103489.
  • [11] Li C, Li X, Wu Y, Zhang F, Huang H. Deformation mechanism and force modelling of the grinding of YAG single crystals. Int J Mach Tool Manuf. 2019;143:23–37.
  • [12] Yang Z, Zhu L, Lin B, Zhang G, Ni C, Sui T. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceram Int. 2019;45(7):8873–89.
  • [13] Zhang JH, Li H, Zhang ML, Zhao Y, Wang LL. Study on force modeling considering size effect in ultrasonic-assisted micro-end grinding of silica glass and Al2O3 ceramic. Int J Adv Manuf Technol. 2017;89:1173–92.
  • [14] Perveen A, Rahman M, Wong YS. Modeling and simulation of cutting forces generated during vertical micro-grinding. Int J Adv Manuf Technol. 2014;71(9–12):1539–48.
  • [15] Cheng J, Gong YD. Experimental study on ductile-regime micro-grinding character of soda-lime glass with diamond tool. Int J Adv Manuf Technol. 2013;69(1–4):147–60.
  • [16] Park HW, Liang SY. Force modeling of micro-grinding incorporating crystallo-graphic effects. Int J Mach Tool Manuf. 2008;48(15):1658–67.
  • [17] Aurich JC, Effgen C. Influence of the machining conditions when preparing cutting edges with elastic bonded grinding wheels. Prod Eng Res Dev. 2015;9(3):329–36.
  • [18] Gong Y, Zhou Y, Wen X. Experimental study on micro-grinding force and subsurface microstructure of nickel-based single crystal superalloy in micro grinding. J Mech Sci Technol. 2017;31(7):3397–410.
  • [19] Lee PH, Lee SW. Experimental characterization of micro-grinding process using compressed chilly air. Int J Mach Tool Manuf. 2011;51(1):201–9.
  • [20] Aurich JC, Engmann J, Schueler GM. Micro-grinding tool for manufacture of complex structures in brittle materials. CIRP Ann Manuf Technol. 2009;58(1):311–4.
  • [21] Gong YD, Wen XL, Cheng J, Yin GQ, Wang C. Experimental study on fabrication and evaluation of a micro-scale shaft grinding tool. J Mech Sci Technol. 2014;28:1027–37.
  • [22] Gäbler J, Pleger S. Precision and micro CVD diamond-coated grinding tools. Int J Mach Tool Manuf. 2010;50(4):420–4.
  • [23] Park HK, Onikura H, Ohnishi O, Sharifuddin A. Development of micro-diamond tools through electroless composite plating and investigation into micro-machining characteristics. Precis Eng. 2010;34:376–86.
  • [24] Muthuramalingam T, Mohan B. A review on influence of electrical process parameters in EDM process. Arch Civ Mech Eng. 2015;15:87–94.
  • [25] Sarand MHJ, Shabgard MR. Investigation of the effect of thermal diffusivity coefficient of tool material on electrode-tool wear in the EDM process. Arch Civ Mech Eng. 2015;15:806–21.
  • [26] Muthuramalingam T, Mohan B. Performance analysis of iso current pulse generator on machining characteristics in EDM process. Arch Civ Mech Eng. 2014;14:383–90.
  • [27] Malkin S, Guo C. Grinding technology: Theory and application of machining with abrasives. USA: McGraw-Hill; 2008.
  • [28] Jamshidi H, Erhan B. An analytical grinding force model based on individual grit interaction. J Mater Process Tech. 2020;283:116700.
  • [29] Nastja M, Luiz FPF, Peter K. Effect of the grit shape on the performance of vitrified-bonded CBN grinding wheel. J Mater Process Tech. 2020;277:116453.
  • [30] Huang XC, Zhang DH, Yao CF, Ren JX. A study of influence of grinding parameters on surface characteristics during grinding GH4169 superalloy. China Mech Eng. 2014;25:210–4.
  • [31] Li HN, Yu TB, Zhu LD. Evaluation of grinding-induced sub-surface damage in optical glass BK7. J Mater Process Tech. 2016;229:785–94.
  • [32] Machado M, Moreira P, Flores P. Compliant contact force models in multibody dynamics: evolution of the hertz contact theory. Mech Mach Theory. 2012;53:99–121.
  • [33] Son SM, Lim HS, Ahn JH. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf. 2005;45(4–5):529–35.
  • [34] Ren JX, Kang RK, Wang XB. Grinding technology of difficult-to-machinc materials. Beijing: Electronic Industry Press; 2011.
  • [35] Merchant ME. Mechanics of the metal cutting process II plasticity conditions in orthogonal cutting. J Appl Phys. 1945;16(6):317–24.
  • [36] Zhao M, Ji X, Li B, Liang SY. Investigation on the influence of material crystallographic orientation on grinding force in the micro-grinding of single-crystal copper with single grit. Int J Adv Manuf Technol. 2017;90(9–12):3347–55.
  • [37] Popov V. Contact mechanics and friction: physical principles and applications. New York: Springer Science and Business Media; 2010.
  • [38] Durgumahanti USP, Singh V, Raop VA. New model for grinding force prediction and analysis. Int J Mach Tools Manuf. 2010;50(3):231–40.
  • [39] Zhu XH. Principle of grinding. Beijing: China machine press; 1988.
  • [40] Shi YX, Ding N. Study of force during external cylindrical traverse grinding. Coal Mine Mach. 2005;02:239–41.
  • [41] Azizi A, Mohamady AM. Modeling and analysis of grinding forces based on the single grit scratch. Int J Adv Manuf Technol. 2015;78(5–8):1223–31.
  • [42] Badger JA, Torrance AA. A comparison of two models to predict grinding forces from wheel surface topography. Int J MachTools Manuf. 2000;40(8):1099–120.
  • [43] Cui LJ, Pang ZR. Mathematics modeling and simulation on grinding forces during ultra-high speed point grinding. Diamond Abra-sives Eng. 2001;31:66–9.
  • [44] Johnson J (2007) Probability and statistics. Wiley encyclopedia of computer science and engineering. John Wiley & Sons, Inc.
  • [45] Li Q, Gong YD, Sun Y, Liu Y, Liang CX. Milling performance optimization of DD5 Ni-based single-crystal superalloy. Int J Adv Manuf Technol. 2018;94:2875–94.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-499f9428-055d-427d-afc3-fa5dda69a432
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.