Czasopismo
2018
|
Vol. 36, No. 4
|
623--629
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
PbO-ZnF2-P2O5 glasses doped with different mol% (0.1 to 1.0) of MoO3 have been prepared. Dielectric properties ∊′(ω), tanδ, σAC, of the synthesized samples were calculated from frequency measurements versus temperature. Space charge polarization was used to analyze the temperature and frequency dispersions of dielectric constant ∊′(ω) and dielectric loss tanδ. Quantum mechanical tunneling model was employed to explain the origin of AC conductivity. The AC conductivity exhibited an increasing trend with increasing concentration of MoO3 (up to 0.2 mol%) but the activation energy for conduction decreased. The plots of AC conductivity revealed that the relaxation dynamics depends on MoO3 dopant concentration.
Czasopismo
Rocznik
Tom
Strony
623--629
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Department of Physics, University of the West Indies, Mona Campus, Jamaica, pvrao54@gmail.com
autor
- Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, AP, India
autor
- Department of Physics, National Institute of Technology Warangal, Warangal, Telangana, India
autor
- Department of Electronics and Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering (A), AP, India
autor
- Department of Humanities and Sciences (Physics), VNR Vignana Jyothi Institute of Engineering and Technology, Bachupally, Nizampet (S.O), Hyderabad, Telangana, India
autor
- Laboratory of Active Components and Materials; Larbi Ben M’hidi University, Oum El Bouaghi, 04000, Algeria
autor
- Laboratoire d’Innovation en construction, Eco-conception et Génie Sismique (LICEGS); Université Mostafa Ben Boulaid Batna 2, Algeria
autor
- Department of Physics, University of the West Indies, Mona Campus, Jamaica
autor
- Departmentof Physics, Andhra Loyola College, Vijayawada, India
autor
- Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, AP, India
Bibliografia
- [1] Doremus R.H., Glass Science, John Wiley&Sons, New York, 1994.
- [2] Money B.K., Hariharan K., Solid State Ionics, 179 (2008), 1273.
- [3] Muñoz F., Montagne L., Pascual L., Duran A., J. Non-Cryst. Solids., 355 (2009), 2571.
- [4] Raguenet B., Tricot G., Silly G., Ribes M., Pradel A., Solid State Ionics, 208 (2012), 25.
- [5] Fergus J.W., J. Power Sources, 162 (2006), 30.
- [6] Yoshioka H., Tanase S., Solid State Ionics, 176 (2005), 2395.
- [7] Ngai T., Tamura S., Imanaka N., Sensor. Actuat. B-Chem., 147 (2010), 735.
- [8] Sayer M., Mansingh A., Phys. Rev. B., 6 (1972), 4629.
- [9] Murawski L., Chung C.H., Mackenzie J.D., J. Non-Cryst. Solids, 32 (1979), 91.
- [10] Mansingh A., Reyes J.M., J. Non-Cryst. Solids, 7 (1972), 12.
- [11] Ahsan M.R., Mortuza M.G., Phys. Chem. Glasses-B, 42 (2001), 1.
- [12] Mostafa Y.M., El-Adawy A., Phys. Status Solidi A., 179 (2002), 83.
- [13] Brow R.K., J. Non-Cryst. Solids., 263 – 264 (2000), 1.
- [14] Venkateswara Rao P., Nagaraju G., Raghava Rao P., Narsimha Rao N., Syamprasad P., Karbala Int. J. Mod. Sci., (2015), 101.
- [15] Abid M., Shaim A., Et-Tabirou M., Mater. Res. Bull., 36 (2001), 2453.
- [16] Bishay A.M., J. Am. Ceram. Soc., 43 (1960), 417.
- [17] Pal M., Tsujigami Y., Yoshikado A., Sakata H., Phys. Status Solidi A, 182 (2000), 727.
- [18] Cormier G., Capobianco J.A., Monteil A., J. Non-Cryst. Solids., 168 (1994), 115.
- [19] Ingram M.D., Phys. Chem. Glasses-B, 28 (1987), 215.
- [20] Music S., J. Mater. Sci., 29 (1994), 1227.
- [21] Lakshmanarao B., Ravibabu Y.N.Ch., Prasad S.V.G.V.A., Physica B, 429 (2013), 68.
- [22] Elliot S.R., Physics of amorphous materials, Long-man, London, 1990.
- [23] Shackelford J.F., Introduction to Materials Science for Engineers, Macmillan, New York, 1985.
- [24] Pavic L., Narasimharao N., Mogus Milankovic A., Santic A., Ravi Kumar V., Piasecki M., Kityk I.V., Veeraiah N., Ceram. Int., 40 (2014), 5989.
- [25] Vijay R., Rames Babu P., Raghavaiah B.V., Vinayateja P.M., Piasecki M., Veeraiah N., Krishna Rao D., J. Non-Cryst. Solids., 386 (2014), 67.
- [26] Miroshnichenko O.Ya., Khvedchenya G.M., J. Appl. Chem., 54 (1981), 563.
- [27] Jager C.H.R., Haubenreisser U., Phys. Chem. Glasses-B, 26 (1985), 152.
- [28] Line K., Bray P., Phys. Chem. Glasses-B, 7 (1966), 41.
- [29] Rao K.J., Structural Chemistry of Glasses, Elsevier, Amsterdam, 2002.
- [30] Ciceolucacel R., Hulpus A.O., Simon V., Ardelean I., J. Non-Cryst. Solids, 355 (2009), 425.
- [31] Srinivasarao G., Veeraiah N., J. Solid State Chem, 166 (2002), 104.
- [32] Venkateswara Rao P., Ravi Kumar V., Veeraiah N., Indian J. Pure Appl. Phys., 38 (2) (2000), 146.
- [33] Raghavaiah B.V., Veeraiah N., Phys. Status Solidi A, 199 (2003), 389.
- [34] Syamprasad P., Raghavaiah B.V., Balajirao R., Laxmikanth C., Veeraiah N., Solid State Com-mun., 132 (2004), 235.
- [35] Subbalakshmi P., Veeraiah N., Indian J. Eng. Mater. S., 8 (2001), 275.
- [36] Montani R.A., Frechero M.A., Solid State Ionics, 158 (2003), 327.
- [37] El-Damarawi G., J. Phys.-Condens. Mat., 7 (1995), 1557.
- [38] Austin I.G., Mott N.F., Adv. Phys., 18 (1969), 657.
- [39] Butcher P., Hyden K., Philos. Mag., 36 (1977), 657.
- [40] Pollak M., Philos. Mag., 23 (1971), 519.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-49673a68-e401-4d06-82c2-41844dd75eca