Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 21 | 81--105
Tytuł artykułu

Optimal Control of a Drying Process with Avoiding Cracks

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the numerical treatment of the optimal control of drying of materials which may lead to cracks. The drying process is controlled by temperature, velocity and humidity of the surrounding air. The state equations dene the humidity and temperature distribution within a simpli ed wood specimen for given controls. The elasticity equation describes the internal stresses under humidity and temperature changes. To avoid cracks these internal stresses have to be limited. The related constraints are treated by smoothed exact barrier-penalty techniques. The objective functional of the optimal control problem is of tracking type. Further it contains a quadratic regularization by an energy term for the control variables (surrounding air) and barrier-penalty terms. The necessary optimality conditions of the auxiliary problem form a coupled system of nonlinear equations in appropriate function spaces. This optimality system is given by the state equations and the related adjoint equations, but also by an approximate projection onto the admissible set of controls by means of barrier-penalty terms. This system is discretized by nite elements and treated iteratively for given controls. The optimal control itself is performed by quasi-Newton techniques.
Wydawca

Rocznik
Tom
Strony
81--105
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Fakultät Maschinenwesen, Technische Universität Dresden 01062 Dresden, Germany
  • Fachrichtung Mathematik, Technische Universität Dresden 01062 Dresden, Germany
  • Fakultät Maschinenwesen, Technische Universität Dresden 01062 Dresden, Germany
autor
  • Fachrichtung Mathematik, Technische Universität Dresden 01062 Dresden, Germany
Bibliografia
  • [1] Amann H.; Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Analysis: Theory, Methods and Applications 12, 1988, pp. 895{919.
  • [2] Branke D., Kröppelin U., Scheffer M., Thielsch K.; Simulationsmodell fr Holzwerkstoffplatten unter Differenzklimabeanspruchung, Holztechnologie 48 (1), 2007, pp. 25{29.
  • [3] Casas E., Mateos M.; Uniform convergence of the FEM applications to state constrained control problems, Comput. Appl. Math. 21, 2002, pp. 67{100.
  • [4] Ciegis R., Starikovi^us V.; Mathematical modelling of wood drying process, Math. Model. Anal. 7(2), 2002, pp. 177{190.
  • [5] Cloutier A., Fortin Y.; A model of moisture movement in wood based on water potential and the determination of the effective water conductivity, Wood Sci. Technology 27, 1993, pp. 95{114.
  • [6] Delphin, TU Dresden, Program system, Institut für Bauklimatik.
  • [7] Dushman S., Lafferty J.M.; Scientific foundation of vakuum techique, Mir, Moskva
  • [8] Galant A.; Mathematische Modelle zur Optimierung von Trocknungsprozessen unter Berücksichtigung von Rissbildungen, TU Dresden, Graduation thesis, 2007.
  • [9] Grossmann C., Roos H.-G., Stynes, M.; Numerical treatment of partial differential equations, Springer, Berlin 2007.
  • [10] Grossmann C., Terno J.; Numerik der Optimierung, Teubner, Stuttgart 1997.
  • [11] Grossmann C., Zadlo M.; A general class of penalty/barrier path-following Newton methods for nonlinear programming, Optimization 54, 2005, pp. 161{190.
  • [12] Hardtke H.-J., Militzer K.-E., Fischer R., Hufenbach W.; Entwicklung und Identifkation eines kontinuumsmechanischen Modells für die numerische Simulation der Trocknung von Schnittholz, TU Dresden, (Research report DFG-project Ha 2075/3-2), 1997.
  • [13] Hinze M.; A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30, 2005, pp. 45-61.
  • [14] Irudayaraj J., Haghighi K., Stroshine R.L.; Nonlinear finite element analysis of coupled heat and mass transfer problems with an application to timber drying,-Drying Technology 8, 1990, pp. 731-749.
  • [15] Kamke F.A., Vanek M.; Review of wood drying models, In: Haslett A.N., Laytner-F. (eds.); Proc. 4th Int. IUFROWood Drying Symposium. August, 1994, Rotorua, NZ For. Res. Inst., Rotorua, New Zealand, pp. 1-21.
  • [16] Kayihan F., Stanish M.A.; Wood particle drying, a mathematical model with experimental evaluation, In: Mujumdar A.S. (ed.); Drying '84. Hemisphere publ. corp. New York 1984, pp. 330{347.
  • [17] Koponen H.; Moisture diffusion coeffcients of wood, In: Mujumdar A.S.; Drying '87. Hemisphere publ. corp. New York 1987, pp. 225{232.
  • [18] Krečetov U.V.; Suška drevesiny, Lesnaja promyslennost, Moskva 1972.
  • [19] Luikov A.V.; Heat and mass transfer in capillary-porous bodies, Pergamon Press, London 1966.
  • [20] Scheffler M.; Bruchmechanische Untersuchungen zur Trockenrissbildung an Laubholz, TU Dresden, Dissertation thesis, 2000.
  • [21] Siau J.F.; Transport processes in wood, Springer, Berlin 1984.
  • [22] Siimes F.; The effect of specific: gravity, moisture, temperature and heating time on the tension and compression strength and elasticity properties perpendicular to the grain of finnish pine spruce and birch wood and the significance of these factors on the checking of timbers at kiln drying, State Inst. Technical Res., Finland, Publ. 84, Helsinki 1967.
  • [23] Thomas H.R., Lewis, R.W., Morgan, K.; An application of the finite element method to the drying of timber, Wood Fibre 11, 1980, pp. 237-243.
  • [24] Tröltzsch F.; Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Amer. Math. Soc. (AMS), Providence, RI, 2010.
  • [25] Vogel R.; Modellierung des Wärme- und Stofftransportes und des mechanischen Spannungsfeldes bei der Trocknung fester Körper am Beispiel der Schnittholztrocknung, TU Dresden, Dissertation thesis, 1989.
  • [26] Welling J.; Die Erfassung von Trocknungsspannungen während der Kammertrocknung von Schnittholz, Hamburg, Dissertation thesis, 1987.
  • [27] Zeidler E., Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer Verlag, New York 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4943215c-f964-4268-bc90-d0136b68404e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.