Warianty tytułu
Języki publikacji
Abstrakty
The ability to accurately detect power system faults is of vital importance for the purpose of isolating malfunctioning equipment and resuming normal operation as soon as possible after a fault occurs. People have used a variety of electric parameters as metrics to identify faults for a long time. The method proposed by this paper departs from the traditional approach by introducing Fisher information (FI) as a measure of the stability of electric signals and as a criterion for making fault decisions. In this way, a non-dimensional positive parameter is used as a single criterion to deliver fault detection for power distribution networks. Firstly, we simplified the formula of FI and then adopted a practical method for calculating values of FI. We demonstrated the application of FI to measure the stability of electric signals. Finally, we combined FI with wavelet analysis to propose a novel technique for phase selection of a power distribution network with a grounding short-circuit fault, namely the wavelet-based Fisher information (WFI). Simulation studies were then carried out to show the feasibility of the proposed method.
Czasopismo
Rocznik
Tom
Strony
274--280
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
- College of Electrical Information and Engineering, Jiangsu University, Zhenjiang, China, 212013), spcai@mail.ujs.edu.cn
- Key Laboratory of Facility Agriculture Measurement and Control Technology and Equipment of Machinery Industry, Jiangsu University, Zhenjiang, China, 212013)
autor
- Key Laboratory of Facility Agriculture Measurement and Control Technology and Equipment of Machinery Industry, Jiangsu University, Zhenjiang, China, 212013)
Bibliografia
- [1] B. Ingelsson, P.-O. Lindstrom, D. Karlsson, G. Runvik, J.-O. Sjodin, Wide-area protection against voltage collapse, IEEE Computer Applications in Power 10 (4) (1997) 30–35.
- [2] J. Hauer, D. Trudnowski, G. Rogers, B. Mittelstadt, Keeping an eye on power system dynamics, IEEE Computer Applications in Power 10 (4) (1997) 50–54.
- [3] W. Yang, Application prospects of entropy theory in power systems, Power Construction (3) (2000) 17–19.
- [4] H. Cabezas, B. D. Fath, Towards a theory of sustainable systems, Fluid Phase Equilibria 194 (01) (2002) 3–14.
- [5] B. D. Fath, H. Cabezas, C. W. Pawlowski, Regime changes in ecological systems: an information theory approach, Journal of Theoretical Biology 222 (4) (2003) 517–530.
- [6] T. Eason, H. Cabezas, Evaluating the sustainability of a regional system using fisher information in the san luis basin, colorado, Journal of Environmental Management 94 (1) (2012) 41–49.
- [7] B. R. Frieden, P. M. Binder, Physics from Fisher Information: A Unification, Cambridge University Press, 2004.
- [8] A. K. Evans, Book review: Probability, statistical optics and data testing. b.r. frieden, third edition, springer, Berlin, 2001., Optics and Lasers in Engineering 38 (5) (2002) 319–320.
- [9] A. L. Mayer, C. W. Pawlowski, H. Cabezas, Fisher information and dynamic regime changes in ecological systems, Ecological Modelling 195 (1) (2006) 72–82.
- [10] A. T. Karunanithi, H. Cabezas, B. R. Frieden, C. W. Pawlowski, Detection and assessment of ecosystem regime shifts from fisher information, Ecology and Society 13 (1) (2008) 439–461.
- [11] B. D. Fath, H. Cabezas, Exergy and fisher information as ecological indices, Ecological Modelling 174 (1) (2004) 25–35.
- [12] H. Cabezas, C. W. Pawlowski, A. L. Mayer, N. T. Hoagland, Sustainable systems theory: ecological and other aspects, Journal of Cleaner Production 13 (5) (2005) 455–467.
- [13] H. Cabezas, C. W. Pawlowski, A. L. Mayer, N. T. Hoagland, Simulated experiments with complex sustainable systems: Ecology and technology, Resources Conservation and Recycling 44 (3) (2005) 279–291.
- [14] Y. Shastri, U. Diwekar, H. Cabezas, J. Williamson, Is sustainability achievable? exploring the limits of sustainability with model systems., Environmental Science and Technology 42 (17) (2008) 6710–6716.
- [15] Y. Shastri, U. Diwekar, H. Cabezas, Optimal control theory for sustainable environmental management, Environmental Science and Technology 42 (14) (2008) 5322.
- [16] V. Rico-Ramirez, P. A. Quintana-Hernandez, J. A. Ortiz-Cruz, S. Hernandez-Castro, Fisher information: A generalized sustainability index?, Computer Aided Chemical Engineering 25 (08) (2008) 1155–1160.
- [17] I. A. Rezek, S. J. Roberts, Stochastic complexity measures for physiological signal analysis., IEEE transactions on bio-medical engineering 45 (9) (1998) 1186–91.
- [18] P. SM, Approximate entropy as a measure of system complexity., Proceedings of the National Academy of Sciences of the United States of America 88 (6) (1991) 2297–2301.
- [19] Z. Jiang, H. Feng, D. Liu, T. Wang, [analyzing sleep eeg using correlation dimension and approximate entropy], Journal of Biomedical Engineering 22 (4) (2005) 649.
- [20] Z. Nan, X. Liu, S. Wang, M. Wan, L. Fei, Dynamic complexity analysis to cognitive event-related potential based on tsallis entropy and approximate entropy, Journal of Xian Jiaotong University 41 (2) (2007) 245.
- [21] X. U. Yong, Approximate entropy and its applications in mechanical fault diagnosis, Information and Control 31 (6) (2002) 547–551.
- [22] H. Hu, X. Ma, Application of local wave approximate entropy in mechanical fault diagnosis, Journal of Vibration and Shock.
- [23] F. U. Ling, H. E. Zheng-You, R. K. Mai, Q. Q. Qian, Application of approximate entropy to fault signal analysis in electric power system, Proceedings of the Csee 28 (28) (2008) 68–73.
- [24] S. Blanco, A. Figliola, R. Q. Quiroga, O. A. Rosso, E. Serrano, Time frequency analysis of electroencephalogram series. iii. wavelet packets and information cost function, Physical Review E Statistical Physics Plasmas Fluids and Related Interdisciplinary Topics 51 (3) (1998) 2624.
- [25] Z. Y. He, Y. M. Cai, Q. Q. Qian, Study of wavelet entropy theory and its application in electric power system fault detection, Proceedings of the Csee.
- [26] H. Zheng-you, L. Zhi-gang, Q. Qing-quan, Study on wavelet entropy theory andadaptability of its application in power system, Power System Technology 32 (32) (2004) 913–20.
- [27] X. Q. Chen, H. E. Zheng-You, F. U. Ling, Electric power transient signals classification and recognition method based on wavelet energy spectrum, Power System Technology 30 (17) (2006) 59–63.
- [28] H. E. Zheng-You, G. M. Luo, J. W. Yang, Power transients recognition based on wavelet energy matrixes similarity, Journal of Electric Power Science and Technology.
- [29] S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (7) (1989) 674–693.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4918f408-2236-4140-9b25-71738558b1ee