Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 46, nr 3 | 453--460
Tytuł artykułu

Identities with generalized derivations in semiprime rings

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let R be a semiprime ring. An additive mapping F:R  R is called a generalized derivation of R if there exists a derivation d : R  R such that F(xy) = F(x)y + xd(y) holds, for all x,y  R. The objective of the present paper is to study the following situations: (1) (...), for all x, y in some appropriate subset of R.
Wydawca

Rocznik
Strony
453--460
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Mathematics Belda College, Belda Paschim Medinipur 721424(W.B.) India, basu_dhara@yahoo.com
autor
Bibliografia
  • [1] S. Ali, S. Huang, On derivations in semiprime rings, Algebr. Represent. Theory 15 (2012), 1023–1033 (DOI 10.1007/s10468-011-9271-9).
  • [2] S. Ali, S. Huang, On left -multipliers and commutativity of semiprime rings, Commun. Korean Math. Soc. 27(1) (2012), 69–76.
  • [3] N. Argac, On prime and semiprime rings with derivations, Algebra Colloq. 13(3) (2006), 371–380. 460 B. Dhara, S. Ali, A. Pattanayak
  • [4] M. Ashraf, A. Ali, R. Rani, On generalized derivations of prime rings, Southeast Asian Bull. Math. 29(4) (2005), 669–675.
  • [5] M. Ashraf, N. Rehman, S. Ali, M. Rahman, On semiprime rings with generalized derivations, Bol. Soc. Paran. Mat. 28(2) (2010), 25–32.
  • [6] H. E. Bell, M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37(4) (1994), 443–447.
  • [7] H. E. Bell, W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30(1) (1987), 92–101.
  • [8] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394.
  • [9] M. N. Daif, Commutativity results for semiprime rings with derivations, Internat. J. Math. Math. Sci. 21 (1998), 471–474.
  • [10] M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15(1) (1992), 205–206.
  • [11] A. Fosner, M. Fosner, J. Vukman, Identities with derivations in rings, Glas. Mat. Ser. III 46(2) (2011), 339–349.
  • [12] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), 369–370.
  • [13] S. Huang, Generalized derivations of prime rings, Internat. J. Math. Math. Sci. Volume 2007, Article ID 85612, 6 pages.
  • [14] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125(2) (1997), 339–345.
  • [15] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
  • [16] J. Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Carolinae 42(2) (2001), 237–245.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-490eb48a-5e62-4467-b291-fd69f759b7c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.