Warianty tytułu
Języki publikacji
Abstrakty
The Matmata region, located in the south of Gabès (Tunisia), experienced significant damage during the floods of the Beni zelten wadi on November 11, 2017. These floods, exacerbated by the steep slopes and underlying soil conditions, led to the occurrence of debris flows, posing a threat to road infrastructure. The generation of debris flows is closely linked to intense rainfall events that surpass the soil capacity to retain water. To gain insights into the behaviour of the soil samples, various characteristics were analysed, including texture, clay mineralogy, grain size distribution, and Atterberg limits. The results showed that the mean liquid limit values ranged from 38% to 62%, while the mean plasticity index of the materials in the landslide-prone areas varied from 18% to 27.9%. These findings indicate presence of clay formations and highlight a significance of the increased soil clay content as contributing factors to landslide development. The X-ray Diffraction analysis revealed that gypsum, quartz, phyllosilicate and calcite minerals were the most abundant minerals identified in the soil samples. This work shows the importance of clay mineral and geotechnical parameters of the soils in the occurrence of landslides and predicting debris flows occurrences in the Matmata region.
Czasopismo
Rocznik
Tom
Strony
23--35
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Higher Institute of the Sciences and Techniques of Waters of Gabes, University of Gabes,6072 Zrig Gabès, Tunisia
- Laboratory of composite materials and clay minerals, National Center for Research in Materials Science Borj Cedria(CNRSM), B.P. 73‑8020 Soliman, Tunisia
autor
- Faculty of Sciences Gabes,University of Gabes, 6072 Hatem BETTAHER Erriadh city Gabes, Tunisia
autor
- Faculty of Sciences Gabes,University of Gabes, 6072 Hatem BETTAHER Erriadh city Gabes, Tunisia
autor
- Department of Earth and Envirnmontal Sciences, University of Pavia, 27100 Via Ferrata 9 Pavia, Italy
autor
- Higher Institute of the Sciences and Techniques of Waters of Gabes, University of Gabes,6072 Zrig Gabès, Tunisia, nouryhamdi@gmail.com
- Laboratory of composite materials and clay minerals, National Center for Research in Materials Science Borj Cedria (CNRSM), B.P. 73‑8020 Soliman, Tunisia
Bibliografia
- Anis, Z., Wissem, G., Riheb, H., Biswajeet, P., Essghaier, G.M., 2019. Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. Journal of African Earth Sciences 151, 146–152. https://doi.org/10.1016/j. jafrearsci.2018.12.005
- Avenard, J.M., 1965. L’érosion actuelle dans le bassin du Sebou. INRA, Rabat.
- Aydi, H., Balti, H., Aydi, A., Gasmi, M., 2022. Contribution of electrical prospecting to the aquifer characterization in El Mouazir-Matmata Nouvelle in Southern Gabes, Southeastern Tunisia. Arabian Journal of Geosciences 15(13), 1–20. https://doi.org/10.1007/ s12517-022-10463-1
- Basharat, M., Shah, H.R., Hameed, N., 2016. Landslide susceptibility mapping using GIS and weighted overlay method: a case study from NW Himalayas, Pakistan. Arabian Journal of Geosciences 9 (4), 1–19. https://doi.org/10.1007/s12517-016-2308-y
- Ben Ouezdou, H., Zouari, H., Louhaichi, L., 1999. Notice explicative de la carte géologique de Gabes-Mareth (Feuille 75 et 83). Serv. Geol. De Tunisie, p. 23.
- Boggs, S., Krinsley, D., 2006. Application of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge University Press, pp. 165. https://doi.org/10.1017/S0016756808004779
- Bouaziz, S., 1995. Etude de la tectonique cassante dans la plate-forme et l’Atlas Sahariens (Tunisie méridionale): Evolution des paléochamps de contraintes et implications géodynamiques. Unpublished thesis ès-Sciences, Université Tunis II, 484.
- Busson, G., 1970. Le Mesozoique saharien, 2eme partie. Essai de synthese des donnees des Sondages algero-tunisiens. CRZA,Geologie, 11, CNRS, Paris, 811.
- Carrière, S. R., Jongmans, D., Chambon, G., Bièvre, G., Lanson, B., Bertello, L., Berti, M., Jaboyedoff, M., Malet, J.-P., Chambers, J.E., 2018. Rheological properties of clayey soils originating from flow-like landslides. Landslides 15(8), 1615–1630. https://doi.org/10.1007/s10346-018-0972-6
- Casagrande, A., 1936. The determination of the pre-consolidation load and its practical significance. Proceedings of the 1st International Conference on Soil Mechanics, Harvard, Vol. 3, 3–60.
- Costet, J., Sanglerat, G., Biarez, J., Lebelle, P., 1969. Cours pratique de mécanique des sols. Paris, Dunod, pp. 599.
- Dai, F.C., Lee, C.F., Li, J.X.Z.W., Xu, Z.W., 2001. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental geology 40(3), 381–391. https://doi.org/10.1007/S002540000163
- Daoudi, L., Knidiri, A., El Idrissi, H.E.B., Rhouta, B., Fagel, N., 2015. Role of the texture of fibrous clay minerals in the plasticity behawior of host materials (Plateau du Kik, Western High Atlas, Morocco). Applied Clay Science 118, 283–289. https://doi.org/10.1016/j. clay.2015.10.006
- Diko, M.L., Banyini, S.C., Monareng, B.F., 2014. Landslide susceptibility on selected slopes in Dzanani, Limpopo Province, South Africa. Journal of Disaster Risk Studies 6(1), art. 7, https://doi.org/10.4102/jamba.v6i1.101
- Dufresne, A., Davies, T.R., 2019. Identification of debris-flow hazard zones: A review. Progress in Physical Geography 43 (6), 774–800.
- Ekosse, G., Ngole, V., Sendze, Y., Ayonghe, S., 2005. Environmental mineralogy of unconsolidated surface sediments associated with the 2001 landslides on volcanic cones, Mabeta New Layout, Limbe, Cameroon. Global Journal of Environmental Sciences 4(2), 115–122.
- El Jazouli, A., Barakat, A., Khellouk, R., 2022. Geotechnical studies for Landslide susceptibility in the high basin of the Oum Er Rbia river (Morocco). Geology, Ecology, and Landscapes 6(1), 40–47. https://doi.org/10.1080/24749508.2020.1743527
- Fall, M., Sarr, A.M., 2007. Geotechnical characterization of expansivesoils and their implications in ground movements in Dakar. Bulletin of Engineering Geology and the Environment, 66(3), 279–288. https://doi.org/10.1007/s10064-006-0070-1
- Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M., 2012. Landslide inventory maps: new tools for an old problem. Earth-Science Reviews 112(1–2), 42–66. https://doi.org/10.1016/j.earscirev.2012.02.001
- Hong, Y., Adler, R.F., Negri, A., Huffman, G.J., 2007. Flood and landslideapplications of near real-time satellite rainfall products. NaturalHazards 43, 285–294.
- Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. https://doi.org/10.1007/s10346-013-0436-y
- Howie, R.A., Zussman, J., Deer, W., 1992. An introduction to therock-forming minerals. London, UK, Longman, p. 696.
- Malet, J.P., Van Asch, T.W., Van Beek, R., Maquaire, O., 2005. Forecastingthe behaviour of complex landslides with a spatially distributed hydrological model. Natural Hazards and Earth System Sciences 5(1), 71–85.
- Loubser, M., Verryn, S., 2008. Combining XRF and XRD analyses and sample preparation to solve mineralogical problems. South African Journal of Geology 111(2–3), 229–238.
- Masrouhi, A., Gharbi, M., Bellier, O., Youssef, M.B., 2019. The Southern Atlas Front in Tunisia and its foreland basin: Structural style and regional-scale deformation. Tectonophysics 764, 1–24. https://doi.org/10.1016/j.tecto.2019.05.006
- Meisina, C., Scarabelli, S., 2007. A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87(3), 207–223. https://doi.org/10.1016/j.geomorph.2006.03.039
- Meisina, C., 2004. Swelling-shrinking properties of weathered clayey soils associated with shallow landslides. Quarterly journal of engineering geology and hydrogeology 37(2), 77–94. https://doi.org/ 10.1144/1470-9236/03-044
- Mitchell, J.K., Soga, K., 1993. Fundamentals of Soil Behavior, John Wiley, Sons Inc., New York, pp. 437.
- Nesse, W.D., 2012. Introduction to mineralogy. Oxford University Press, pp. 496.
- Ngole, V.M., Georges-Ivo, E.E., Ayonghe, S.N., 2007. Physico-chemical, mineralogical and chemical considerations in understanding the 2001 Mabeta New Layout landslide, Cameroon. Journal of Applied Sciences and Environmental Management 11(2), 201–208. https://doi.org/10.4314/jasem.v11i2.55041
- Petley, D.N., Mantovani, F., Bulmer, M.H., Zannoni, A., 2005. The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66(1–4), 133–147. https://doi.org/10.1016/j.geomorph.2004.09.011
- Sangchini, E.K., Emami, S.N., Tahmasebipour, N., Pourghasemi, H.R.,Naghibi, S.A., Arami, S.A., Pradhan, B., 2016. Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal- e-Bakhtiari Province, Iran. Arabian Journal of Geosciences 9(3), 1–15. https://doi.org/10.1007/s12517-015-2258-9
- Tanyas, H., Topal, T., 2015. Investigating the relationship betweenland use/cover changes and landslide susceptibility in and around Trabzon city center, Turkey. Environmental Earth Sciences 73 (11), 7205–7223.
- Thomas, P.J., Baker, J.C., Zelazny, L.W., 2000. An expansive soil index for predicting shrink-swell potential. Soil Science Society of America Journal 64(1), 268–274. https://doi.org/10.2136/sssaj2000.641268x
- Yalcin, A., Reis, S., Aydinoglu, A.C., Yomralioglu, T., 2011. A GISbased comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3), 274–287. https://doi.org/10.1016/j.catena.2011.01.014
- Yalcin, A., 2007. The effects of clay on landslides: A case study. Applied Clay Science 38(1–2), 77–85. https://doi.org/10.1016/j.clay. 2007.01.007
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-48ca88a6-e65c-47db-8899-d278dc288b87