Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 25 | 317-322
Tytuł artykułu

Determining the parameters of response of a discrete system to stochastic impulses

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Jubilee Symposium Vibrations In Physical Systems (25 ; 15-19.05.2012 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
The paper discusses vibrations of a discrete system with damping, which are caused by impulses with a stochastic value of an impulse and stochastic moments of excitation of the movement. The analysis of the recorded trajectory of vibrations of the oscillator showed that the parameters of the system's responses to subsequent hits undergo changes. The changes of the parameters of the system depend on the duration of work of the oscillator, the intensity of the impulses as well as the temperature of the environment. The study attempts to approximate these changes so that it becomes possible to determine the distribution of stochastic impulses.
Wydawca

Rocznik
Tom
Strony
317-322
Opis fizyczny
Bibliogr. 13 poz., wykr.
Twórcy
autor
  • AGH University of Science and Technology, The Faculty of Mechanical Engineering and Robotics, Department of Mechanics and Vibroacoustics, A. Mickiewicza 30 Ave. 30-059 Krakow, Poland, aozga@agh.edu.pl
Bibliografia
  • 1. M. Jabłoński, A. Ozga, On statistical parameters characterizing vibrations of damped oscillator forced by stochastic impulses, Archives of Acoustics, 31(4 suppl.) (2006) 65-73.
  • 2. M. Jabłoński, A. Ozga, The influence of numerical errors on determining the distribution of values of stochastic impulses forcing an oscillator Mechanics and Control AGH University of Science and Technology. Faculty of Mechanical Engineering and Robotics, Commission on Applied Mechanics of Polish Academy of Sciences. Cracow Branch, 29(4) (2010) 163-168.
  • 3. M. Jabłoński, A. Ozga, Distribution of stochastic impulses acting on an oscillator as a function of its motion, Acta Physica Polonica A, 118(1) (2010) 74-77, 2010.
  • 4. M. Jabłoński, A,. Ozga, T. Korbiel, P. Pawlik, Determining the distribution of stochastic impulses acting on a high frequency system through an analysis of its vibrations, Acta Physica Polonica A, Warszawa; 119(6A) (2011) Acoustic and biomedical engineering 977-980.
  • 5. M. Jabłoński, A. Ozga, The role of ergodicity in the search for the stochastic distribution of impulses forcing the motion of linear systems, 10th Conference on Active noise and vibration control methods MARDiH: Krakow-Wojanow 2011.
  • 6. M. Jabłoński, A. Ozga, Determining the distribution of values of stochastic impulses acting on a discrete system in relation to their intensity, Acta Physica Polonica A, Warszawa; 121(1-A) (2012) Acoustic and biomedical engineering. 175A–179A.
  • 7. J. Awrejcewicz, Drgania deterministyczne układów dyskretnych [Deterministic vibrations of discrete systems], WNT, Warszawa 1996.
  • 8. S. Kaliski, Drgania i fale [Vibrations and Waves], Mechanika Techniczna, t. III, PWN, Warszawa 1986.
  • 9. Z., Osiński, Teoria Drgań [Theory of Vibrations], PWN, Warszawa 1980.
  • 10. J.B. Roberts, On the response of a simple oscillator to random impulses, Journal of Sound and Vibration, 4 (1966) 51-61.
  • 11. J.B. Roberts, Distribution of the Response of Linear Systems to Poisson Distributed Random Pulses. Journal of Sound and Vibration, 28 (1973) 93-103.
  • 12. J.B. Roberts, P. D. Spanos, Stochastic averaging: An approximate method of solving random vibration problems, International Journal of Non-Linear Mechanics 21 (1986) 111-134.
  • 13. A. Tylikowski, W. Marowski, Vibration of a nonlinear single degree of freedom system due to Poissonian impulse excitation, International Journal of Non-Linear Mechanics, 21(1986) 229-238.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4894183f-b2cd-4c61-88a9-6da5f542a873
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.