Warianty tytułu
Języki publikacji
Abstrakty
The goal of this research is an analysis of risk factors that occur with the installation of wastewater treatment plants. Another purpose of this paper is to demonstrate the clear identification of risk factors during the construction of wastewater treatment plants. Also, this study aims to develop models for risk factors assessment as a basis for the analysis of risks associated with the installation of wastewater treatment plants. The paper will point out the identification of risk factors during the installation of wastewater treatment plants in a project conducted in the Republic of Serbia. The analysis identified risk factors that brought the project being conducted in the city of Krusevac. The purpose of research and identification of risk factors is to relax managing high-risk situations and to ensure an approach for eliminating the negative effects that risks create. The expected result is a developed model with definedrisk factors for the estimation of their negative impact on wastewater treatment plants.
Czasopismo
Rocznik
Tom
Strony
5--26
Opis fizyczny
Bibliogr. 77 poz., tab.
Twórcy
autor
- Faculty of Information Technology and Engineering, University Union-Nikola Tesla, Belgrade, J. Gagarina 149a, Serbia, jelena.grujic@fpsp.edu.rs
autor
Bibliografia
- [1] PIOTROWSKI R., MILEWSKI K., MAGIA B., Adaptive stochastic and hybrid nonlinear optimization algorithms for improving the ejectiveness of the biological processes at the WWTP, Biochem. Eng. J., 2023, 193, 108852. DOI:10.1016/j.bej.2O23.108852.
- [2] DRURY B., ROSI-MARSHALL E., KELLY J.J., Wastewater treatment ejluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers, Appl. Environ. Microbiol., 2013, 79 (6), 897-1905. DOI:10.1128/AEM.03527-12.
- [3] PASCIUCCO F., PECORINI I., IANNELLI R., A comparative LCA of three the WWTPs in a tourist area: L.fects of seasonal loading rate variations, Sci. Total Environ., 2023, 863, 160841. DOI:10.1016/i.sci-totenv.2022.160841.
- [4] LORENZO-TOJA Y., VAZQUEZ-ROWE I., CHENEL S., MARIN-NAVARRO D., MOREIRA M.T., FEIJOO G., ECO-efficiency analysis of Spanish the WWTPs using the LCA + DEA method, Water Res., 2015, 68. DOI:10.1016/j.watres.2014.10.040.
- [5] TSANGAS M., PAPAMICHAEL I., BANTI D., SAMARAS P., ZORPAS A.A., LCA of municipal wastewater treatment, Chern., 2023, 341, 139952. DOI:10.1016/j.chemosphere.2023.139952.
- [6] DIAZ-ELSAYED N., REZAEI N., NDIAYE A., ZHANG Q., Trends in the environmental and economic sustainability of wastewater-based resource recovery. A review, J. Clean. Prod., 2020, 265. DOI:10.1016 /j.jclepro.2020.121598.
- [7] WANG J., CHEN Y., CAI P., GAO Q., ZHONG H., SUN W., CHEN Q., Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau, J. Hazard. Mater., 2022, 423, el27170. DOI:10.1016/j.jhazmat.2021. 127170.
- [8] TABESH M., ROOZBAHANI A., ROGHANI B., FAGHIHIN.R., HEYDARZADEH R., Risk assessment of factors influencing non-revenue water using Bayesian networks and fuzzy logic, Water Res. Manage., 2018, 32, 11, 1-24.
- [9] DIPPONG T., HOAGHIA M.A., MIHALI C., CICAL E., CALUGARU M., Human health risk assessment of some bottled waters from Romania, Environ. Pollut., 2020, 267, 115409. DOI:10.1016/j.envpol.2020.115409.
- [10] HALLOWELL M.R., GAMBATESE J.A., Qualitative research: Application of the Delphi method to CEM research, J. Construct. Eng. Manage., 2010, 136 (1), 99-107. DOI 10.1061/(ASCE)CO. 1943-7862. 0000137.
- [11] SHARIFFN., Utilizing the Delphi survey approach: A review, J. Nurs. Care, 2015, 4 (3), 246. DOI:10.4172/2167-1168.1000246.
- [12] TUROFFM., LINSTONE H.A., The Delphi method. Techniques and applications, Addison-Wesley, 2002. DOI:10.2307/3150755.
- [13] GRIME M.M., WRIGHT G., Delphi method, [hi:] Wiley StatsRef Statistics Reference Online, Wiley, 2016, 1-6, DOI:10.1002/9781118445112.stat07879.
- [14] LOO R., The Delphi method. A powerful toolfor strategic management, Pol. Int. J. Pol. Strat. Manage., 2002,25 (4), 762-769. DOI:10.1108/13639510210450677.
- [15] MARHAVILAS P.K., KOULOURIOTIS D., GEMENI V., Risk analysis and assessment methodologies in the work sites. On a review, class fication and comparative study of the scientfic literature of the period 2000-2009, J. Loss Prev. Proc. Ind., 2011, 24 (5), 477-523.
- [16] VILLA V., PALTRINIERI N., KHAN F., COZZANI V., Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry, Saf. Sci., 2016, 89, 77-93.
- [17] BRYMAN A., Integrating quantitative and qualitative research: how is it done?, Qual. Res., 2006, 6 (1), 97-113. DOI:10.1177/1468794106058877.
- [18] CRESWELL J.W., CLARK V.L.P., Designing and conducting mixed methods research, Sage Publications, 2017.
- [19] JAHANVAND B., MORTAZAVI S.B., MAHABADI H.A., AHMADI O., Determining essential criteria for selection of risk assessment techniques in occupational health and safety. A hybrid framework of fuzzy the Delphi method, Saf. Sci., 2023, 167, 106253. DOI:10.1016/j.ssci.2023.106253.
- [20] SHELAKE A.G., GOGATEN.G., RAJHANS N.R., An integrated approach for identification and prioritization of risk factors in tunnel construction, Mater. Today: Proc., 2022, 65 (2), 1805-1812.
- [21] SALAMEH A. A., AKHTAR H., GUL R., OMAR AB., HANIF S., Personality traits and entrepreneurial intentions. Financial risk-taking as a mediator, Front. Psych., 2022, 927718. DOI:10.3389/fpsyg.2022.927718.
- [22] HAN D., CURRELL M.J., CAO G., Deep challenges for China’s war on water pollution, Environ. Poll., 2016, 218, 1222-1233. DOI:10.1016/j.envpol.2016.08.078.
- [23] COROMINAS L.L., FOLEY J., GUEST J.S., HOSPIDO A., LARSEN H.F., MORERA S., SHAW A., Life cycle assessment applied to wastewater treatment. State of the art, Water Res., 2013, 47, 15, 5480-5492. DOI:10.1016/j .watres .2013.06.049.
- [24] YANG Z., MA S., DU S., CHEN Y., LI X., WANG R., LUO J., PAN Z., TAN Z., Assessment of upgrading the WWTP in southwest China: Towards a cleaner production, J. Clean. Prod., 2021, 326, 129381. DOI:10.1016/j.jclepro.2021.129381.
- [25] XU J., LUO P., LU B., WANG H., WANG X., WU J., YAN J., Energy-water nexus analysis of wastewater treatment plants (the WWTPs) in China based on statistical methodologies, En. Proc., 2018, 152, 259 -264. DOI: 10.1016/j.egypro.2018.09.116.
- [26] YANG J., CHEN B., Energy eficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis, Appl. En., 2021, 289, 116680. DOI:10.1016/j.apenergy.2021.116680.
- [27] MARTIN C., VANROLLEGHEM P.A., Analysing, completing, and generating irfluent data for the WWTP modelling. A critical review, Environ. Modell. Soft., 2014, 60, 188-201. DOI:10.1016/j.envsoft.2014.05.008.
- [28] GALLEGO-SCHMID A., TARPANI R.R.Z., Lfe cycle assessment of wastewater treatment in developing countries. A review, Water Res., 2019, 153, 63-79. DOI:10.1016/j.watres.2019.01.010.
- [29] DING L., LVZ., HAN M., ZHAO X., WANG W., Forecasting China’s wastewater discharge using dynamic factors and mixed-frequency data, Environ. Poll., 2019, 255, 113148. DOI:10.1016/j.envpol. 2019.113148.
- [30] HO J.Y., OOI J., WAN Y.K., ANDIAPPAN V., Synthesis of wastewater treatment process (WWTP) and supplier selection via fuzzy analytic hierarchy process (FAHF), J. Clean. Prod., 2021, 314, 128104. DOI:10.1016/j.jclepro.2021.128104.
- [31] OPP C., ZIEBOLZ B., Water analyses, eco-balance and socio-demographic analyses as prerequisites for solutions of the sewage treatment problems in rural areas, J. Geosci. Environ. Prot., 2015, 3, 10.
- [32] MORERA S., COROMINAS L., RIGOLA M., POOH M., COMAS J., Using a detailed inventory of a large wastewater treatment plant to estimate the relative importance of construction to the overall environmental impacts, Water Res., 2017, 122, 614-623. DOI:10.1016/j.watres.2017.05.069.
- [33] RIECHELMANN C., HABASHY M.M., RENE E.R., MOUSSA M.S., HOSNEY H., Assessment of hybrid fixed and moving bed biofilm applications for wastewater treatment capacity increase. In situ tests in El- -Gouna the WWIP, Chern., 2023, 139783. DOI:10.1016/j.chemosphere.2023.139783.
- [34] CHENZ.,NGOH.H., GUO W., A critical review on sustainability assessment of recycled water schemes, Sei. Total Environ., 2012, 426, 13-31, DOI:10.1016/j.scitotenv.2012.03.055.
- [35] ABDULLA F., FARAHAT S., Impact of climate change on the peiformance of wastewater treatment plant. Case study Central Irbid the WWIP (Jordan), Proc. Manuf., 2020, 44, 205-212.
- [36] MOUSSAOUI T.E., BELLOULID M.O., ELHARBILI R., ASS K.E., OUAZZANI N., Simultaneous assessment of purification peiformances and wastewater byproducts management plans towards a circular economy. Case of Marrakesh the WWIP, Case Stud. Chern. Environ. Eng., 2022, 6, 100228. DOI:10.1016 /j.cscee. 2022.100228.
- [37] JAFARINEJAD S., Cost estimation and economical evaluation of three cor.figurations of activated sludge process fora wastewater treatment plant (WWIP) using simulation, Appl. Water Sei., 2017, 7, 2513- 2521. DOI:10.1007/s 13201 -016-0446-8.
- [38] BLUMENTHAL U.J., MARA D.D., PEASEY A., RUIZ-PALACIOS G., STOTT R., Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines, Bull. World Health Org., 2000, 78, 1104-1116.
- [39] W.H. O. Sanitation Scfety Planning: Manual for Safe Use and Disposal of Wastewater, Greywater and Excreta 978-92-4-154924-0, World Health Org., Geneva, Switzerland, 2015.
- [40] MOUSSAVI S., THOMPSON M., LI S., DVORAK B., Assessment of small mechanical wastewater treatment plants. Relative lfe cycle environmental impacts of construction and operations, J. Environ. Manage., 2021,292, 112802. DOI: 10.1016/j.jenvman.2021.112802.
- [41] TRUBETSKAYA A., HORAN W., CONHEADY P., STOCKIL K., MOORE S., A methodology for industrial water footprint assessment using energy-water-carbon nexus, Processes, 2021, 9, 393. DOI:10.3390/pr9020393.
- [42] XUE X., HAWKINS T.R., SCHOEN M.E., GARLAN J., ASHBOLT N.J., Comparing the lfe cycle energy consumption, global warming and eutrophication potentials of several water and waste service options, Water, 2016, 8 (4), 154. DOI:10. 3390/w8040154.
- [43] KUCZENSKI B., GEYER R., BOUGHTON B., Tracking toxicants. Toward a lfe cycle aware risk assessment, Environ. Sci. Technol., 2011, 45 (1), 45-50.
- [44] BUTLER D., FRIEDLER E., GATT K., Characterising the quantity and quality of domestic wastewater irflows, Water Sci. Technol., 1995, 31 (7), 13-24. DOI:10.1016/0273-1223(95)00318-H.
- [45] BOTT C., PARKER D.S., WEF/WERF study quant fying nutrient removal technology peiformance, Water Environ. Res. Found. (WERF), Alexandria, VA, USA, 2010.
- [46] MORAVEC M., BADIDA M., MKUSOVA N., SOBOTOVA L., SVAJLENKA J., DZURO T., Preposed eptions for noise reduction from a wastewater treatment plant. Case study, Sust., 2021, 13 (4), 2409. DOI:10.3390/su 13042409.
- [47] VASILYEV A.V., Russian experience of power plants noise and vibration estimation and reduction, [In:] Proc, of the Conf. Noise Control For A Better Environment, inter.noise 2019, Madrid, Spain, 16-19 June 2019, available online: http://www.sea-acustica.es/fileadmin/INTERNOISE_2019/Fchrs /Proceedings /2099. pdf [accessedon 23 November 2020].
- [48] RODRIGUEZ-GARCIA G., MOLINOS-SENANTE M., HOSPIDO A., HERNANDEZ-SANCHO F., MOREIRA M.T., FEIJOO G., Environmental and economic prefile of six typologies ef wastewater treatment plants, Water Res., 2011, 45 (18), 5997-6010. DOI:10.1016/j.watres.2011.08.053.
- [49] BRUNKARD J.M., AILES E., ROBERTS V.A., HILL V., HILBORN E.D., CRAUN G.F., RAJASINGHAM A., KAHLER A, GARRISON L., HICKS L., CARPENTER J., WADE T.J., BEACH M.J., YODER J.S., Surveillance for waterborne disease outbreaks associated with drinking water - United States, 2007--2008, MMWR, Surv. Summaries, 2011, 60 (12), 38-68.
- [50] SCHETS F.M., RODA HUSMAN A.M., HAVELAAR A.H., Disease outbreaks associated with untreated recreational water use, Epidem. Inf., 2010, 1-12.
- [51] DIAZ-GARDUNO B., RUEDA-MARQUEZ J.J., MANZANO M.A., GARRIDO-PEREZ C., MARTIN-DIAZ M.L., Are combined AOPs ejectivefor toxicity reduction in receiving marine environment? Suitability of battery of bioassays for wastewater treatment plant (WWTP) ejluent as an ecotoxicological assessment, Marine Environ. Res., 2016, 114, 1-11. DOI:10.1016/j.marenvres.2015.12.011.
- [52] SABEEN A.H., NOOR Z.Z., NGADI N., ALMURAISY S., RAHEEM A.B., Quantfication of environmental impacts of domestic wastewater treatment using I fie cycle assessment: a review, J. Clen. Prod., 2018, 190,221-233, DOI:10.1016/j.jclepro.2018.04.053.
- [53] HENZE M., HARREMOES P., JANSEN J.C., ARVIN E., Wastewater Treatment. Biological and Chemical Processes, Springer, 1995.
- [54] FADILAH M.I.S., HUSIN A.E., FIRDAOS S., HUSIN M.K.E., Time performance improvement by supply chain management and 4d building irformation modelling (B1M 4a). Integration implementation on wastewater treatment plant international, J. Adv. Sci. Technol., 2020, 29, 4, 3700-3708.
- [55] MIDDELKOOP H., DAAMEN K., GELLENS D., GRABS W., KWADIJK J.C., LANG H., PARMET B.W., SCHADLER B., SCHULLA J., WILKE K., Impact of climate change on hydrological regimes and water resources management in the Rhine Basin, Clim. Change, 2001, 49 (1-2), 105-128.
- [56] CARPENTER A.C., GARDNER K.H., FOPIANO J., BENSON C.H., EDIL T.B., Lfe cycle based risk assessment of recycled materials in roadway construction, Waste Manage., 2007, 27 (10), 1458-1464.
- [57] ZHAO Y.W., QIN Y, CHEN B., ZHAO X., Li Y, YIN X.A., CHEN G.Q., GIS-based optimization for the locations of sewage treatment plants and sewage ou falls. A case study of Nansha District in Guangzhou City, China, Comm. Nonl. Sci. Num. Sim., 2009, 14, 4, 1746-1757. DOI:10.1016/j.cnsns.2007.12.016.
- [58] ZOUBOULIS A., TOLKOU A., Effect of climate change in wastewater treatment plants. Reviewing the problems and solutions, [In:] S. Shrestha, A. Anal, P. Salam, M. van der Valk (Eds.), Management of Water Resources under Climate Uncertainly, Springer, Cham 2015. DOI: 10.1007/978-3-319-10467-6 10.
- [59] KIKUCHI Y., HIRAO M., Practical method c f assessing local and global impacts for risk-based decision making. A case study of metal degreasing processes, Environ. Sci. Technol., 2008, 42 (12), 4527-4533.
- [60] SHOUSHTARIAN M.F., NEGAHBAN A., Worldwide regulations and guidelines for agricultural water reuse. A critical review, Water, 2020, 12 (4), 971. DOI:10.3390/wl2040971.
- [61] GOSTELOW P., PARSONS S.A., STUETZ R.M., Odour measurements for sewage treatment works, Water Res., 2001,35,579-597.
- [62] TAN Q., HUANG G.H., CAI Y.P., Identfication of optimal plans for municipal solid waste management in an environment of fuzziness and two-layer randomness, Stoch. Environ. Res. Risk Assess., 2010, 24, 147-164.
- [63] TABESH M., ROOZBAHANI A., ROGHANI B., SALEHI S., RASI FAGHIHI N., HEYDARZADEH R., Prioritization of non-revenue water reduction scenarios using a risk-based group decision-making approach, Stoch. Environ. Res. Risk Assess., 2020, 34, 1713-1724.
- [64] CHANG F.J., HUANG C.W., CHENG S.T., CHANG L.C., Conservation cfgroundwater from over-exploitation. Scientific analyses for groundwater resources management, Sei. Total Environ., 2017, 598, 828-838.
- [65] PAGE D., GONZALEZ D., NAUMANN B., DILLON P., VANDERZALM J., BARRY K., Stormwater managed aqufer recharge risk based management plan: parefield stormwater harvesting system, Goyder Institute for Water Resources, Adelaide, South Australia, 2013.
- [66] STERK A., MAN H., SCHIJVEN J.F., NIIS T., RODA HUSMAN A.M., Climate change impact on ir.fection risks during bathing downstream of sewage emissions from CSOs or the WWTPs, Water Res., 2016, 105, 11-21. DOI:10.1016/j.watres.2016.08.053.
- [67] LIC C., LI K., YU L., XU Y., HUANG B., WU J., WANG Z., POPS and their ecological risk in sewage sludge of wastewater treatment plants in Be.jing, China, Stoch. Environ. Res. Risk Assess., 2013, 27, 1575-1584.
- [68] GABRIELLI M., COMPAGNI R.D., GUSMAROLI L., MALPEI F., POLESEL F., BUTTIGLIERI G., ANTONELLI M., TUROLLA A., Modelling and prediction of the eject of operational parameters on the fate of contaminants of emerging concern in the WWTPs, Sci. Total Environ., 2023, 856 (2), 159200. DOI:10.1016/j .scitotenv.2022.159200.
- [69] AENAB A, SINGH S., Critical assessment c f river water quality and wastewater treatment plant (WWTP), Int. J. Adv. Res., 2015, 3, 405-411.
- [70] WANG X., LIU J., REN N., DUAN Z., Environmental prefile of typical anaerobic/anoxic/oxic wastewater treatment systems meeting increasingly stringent treatment standards from a Ife cycle perspective, Biores. Technol., 2012, 126, 31-40.
- [71] PARRAVICINI V., SVARDAL K., KRAMPE J., Greenhouse gas emissions from wastewater treatment plants, En. Proc., 2016, 97, 246-253. DOI:10.1016/j.egypro.2016.10.067.
- [72] GONZALEZ D., COLON J., SANCHEZ A., GABRIEL D., Multipoint characterization of the emission of odour, volatile organic compounds and greenhouse gases from a full-scale membrane-based municipal the WWTP, J. Environ. Manage., 2022, 313, 115002. DOI:10.1016/j.jenvman.2022.115002.
- [73] TRAN N.H., REINHARD M., GIN K.Y.H., Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from deferent geographical regions. A review, Water Res., 2018, 133, 182-207. DOI:10.1016/j.watres.2017.12.029.
- [74] CAPELLI L., SIRONI S., DEL ROSSO R., CENTOLA P., Predicting odour emissions from wastewater treatmentplants by means of odour emission factors, Water Res., 2009, 43, 1977-1985. DOI:10.1016/j.watres. 2009.01.022.
- [75] KIM J., DESHMUKH A., HASTAK M., A frameworkfor assessing the resilience of a disaster debris management system, Int. J. Dis. Risk Red., 2018, 28, 674-687.
- [76] LIU D., GUO S., SHAO Q., JIANG Y., CHEN X., Optimal allocation of water quantity and waste load in the Northwest Pearl River Delta, China, Stoch. Environ. Res. Risk Assess., 2014, 28, 1525-1542.
- [77] BRUS A., PERRODIN Y., Tdentfication, assessment and prioritization of ecotoxicological risks on the scale of a territory. Application to the WWTP discharges in a geographical area located in northeast Lyon, France, Chern., 2017, 189, 340-348. DOI:10.1016/j.chemosphere.2017.09.054.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-488577e2-6b4c-4b15-a1ba-ff89358d1950