Warianty tytułu
Języki publikacji
Abstrakty
The article is devoted to the improvement of the design of a desalination solar plant for more efficient and economical production of desalinated water due to intensive evaporation of the boiling solution, reduction of energy losses to the external environment and the absence of the need for continuous adjustment of the direction of the light-receiving part of the solar plant. The expedient parameters of the angles of inclination of the optical axis of the lens relative to the azimuth and the incidence vector of solar radiation, which ensure high performance of the solar plant, were experimentally substantiated. The use of a solar collector equipped with an additional heat accumulator will allow water to be supplied for desalination at a temperature of more than 50 °C in sunny weather, and at a temperature of 33–36 °C in variable cloudiness, which will help to increase the efficiency of the desalination solar plant. The presence of a heat accumulator and a layer of thermal insulation under cloudy conditions allows maintaining the operating water temperature at 33–36 °C 4.4 times longer than without them.
Słowa kluczowe
Rocznik
Tom
Strony
17--26
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Environmental Protection, Donetsk National Technical University, Shybankova Sq., 2, Pokrovsk, Donetsk Region, 85300, Ukraine, vk.kostenko@gmail.com
autor
- Department of Environmental Protection, Donetsk National Technical University, Shybankova Sq., 2, Pokrovsk, Donetsk Region, 85300, Ukraine, olha.bohomaz@donntu.edu.ua
autor
- Department of Environmental Protection, Donetsk National Technical University, Shybankova Sq., 2, Pokrovsk, Donetsk Region, 85300, Ukraine, oleksii.kutniashenko@donntu.edu.ua
autor
- Lyceum with a Structural Subdivision of Gymnasium No. 1 of the Pokrovsk City Council of the Donetsk region, Universitetskyi L., 31, Pokrovsk, Donetsk Region, 85300, Ukraine, svetlana160985@gmail.com
autor
- Department of Environmental Protection, Donetsk National Technical University, Shybankova Sq., 2, Pokrovsk, Donetsk Region, 85300, Ukraine, maryna.tavrel@donntu.edu.ua
autor
- Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defence of Ukraine, Onoprienka St., 8, Cherkasy, 18034, Ukraine, tatiana.kostenko@gmail.com
autor
- Department of Environmental Protection, Donetsk National Technical University, Shybankova Sq., 2, Pokrovsk, Donetsk Region, 85300, Ukraine, yuliia.simonova@donntu.edu.ua
Bibliografia
- 1. Ahmed, F.E., Hashaikeh, R., Hilal, N. 2019. Solar powered desalination – Technology, energy and future outlook. Desalination, 453, 54–76. https://doi.org/10.1016/j.desal.2018.12.002
- 2. Alkhudhiri, A., Darwish, N., Hilal, N. 2012. Membrane distillation: A comprehensive review. Desalination, 287, 2–18. https://doi.org/10.1016/j.desal.2011.08.027
- 3. Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R.V., Missimer, T., Lattemann, S. 2017. Membranebased seawater desalination: Present and future prospects. Desalination, 401, 16-21. https://doi.org/10.1016/j.desal.2016.10.002
- 4. Ayoub, G.M., Malaeb, L. 2012. Developments in Solar Still Desalination Systems: A Critical Review. Critical Reviews in Environmental Science and Technology, 42(19), 2078–2112. https://doi.org/10.1080/10643389.2011.574104
- 5. Badran, O. 2007. Experimental study of the enhancement parameters on a single slope solar still productivity. Desalination, 209(1–3), 136–143. https://doi.org/10.1016/J.DESAL.2007.04.022
- 6. Eke, J., Yusuf, A., Giwa, A., Sodiq, A. 2020. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, 495, 114633. https://doi.org/ https://doi.org/10.1016/j.desal.2020.114633
- 7. Felicia, Kusumadewi, R.A., Winarni, Hadisoebroto, R. 2022. Effect of Glass Cover Thickness and Inclination Angle on Distillate Efficiency of SingleStage Solar Still. IOP Conference Series: Earth and Environmental Science, 1098, 012053. https://doi.org/10.1088/1755-1315/1098/1/012053
- 8. Gude, V.G. 2017. Desalination and water reuse to address global water scarcity. Rev Environ Sci Biotechnol, 16, 591–609. https://doi.org/10.1007/s11157-017-9449-7
- 9. Kabeel, A.E., Omara, Z.M., Essa, F.A. 2014. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach. Energy Conversion and Management, 78, 493–498. https://doi.org/10.1016/j.enconman.2013.11.013
- 10. Khawaji, A.D., Kutubkhanah, I.K., Wie, J.-M. 2008. Advances in seawater desalination technologies. Desalination, 221(1–3), 47–69. https://doi.org/10.1016/j.desal.2007.01.067
- 11. Kostenko, V., Zavialova, O., Chepak, O., Pokalyuk, V. 2018. Mitigating the adverse environmental impact resulting from closing down of mining enterprises. Mining of Mineral Deposits, 12, 105–112. https://doi.org/10.15407/mining12.03.105
- 12. Kostenko, V.K., Lyashok, YA.O., Zav’yalova, O.L., Shkril’ova, S.M., Bryantseva, A.O. 2020. Patent for the invention 121368, Ukraine.
- 13. Kostenko, V., Shkrylova, S., Zavialova, O., Kostenko, T., Kostyrka, O., Rotar, V. 2021. Pilot tests of a hybrid solar installation. Ecological Engineering & Environmental Technology, 22(6), 122–130. https://doi.org/10.12912/27197050/142433
- 14. Kostenko, V., Tavrel, M., Bohomaz, O., Zavyalova, O., Kostenk, Т., Myhalenko, K., Kostyrka, О. 2022. Experimental testing of water body aeration airlift technology. Ecological Engineering & Environmental Technology, 23(3), 184–192. https://doi.org/10.12912/27197050/147635
- 15. Maftouh, A., Fatni, O.E., Bouzekri, S., Bahaj, T., Kacimi, I., Hajjaji, S.E., Malik, A. 2023. Solar desalination: current applications and future potential in MENA Region – A case study. Journal of Sustainable Development of Energy, Water and Environment Systems, 11(2), 1100437. https://doi.org/10.13044/j.sdewes.d10.0437
- 16. Manokar, A., Kalidasa Murugavel, K., Esakkimuthu, G. 2014. Different parameters affecting the rate of evaporation and condensation on passive solar still – A review. Renewable and Sustainable Energy Reviews, 38, 309–322. https://doi.org/https://doi.org/10.1016/J.RSER.2014.05.092
- 17. Mohammadi, K., Saghafifar, M., Ellingwood, K., Powell, K. 2019. Hybrid concentrated solar power (CSP)- desalination systems: a review. Desalination, 468, 114083. https://doi.org/10.1016/j.desal.2019.114083
- 18. Mykytyuk, P.D. 2015. Sposib oprisnennya solonoyi vody. Patent for utility model 103905, Ukraine.
- 19. Nwosu, E.C., Nwaji, G.N., Ononogbo, C., Ofong, I., Ogueke, N.V., Anyanwu, E.E. 2023. Effects of water thickness and glazing slope on the performance of a double-effect solar still. Scientific African, 21, e01777, https://doi.org/10.1016/j.sciaf.2023.e01777
- 20. Panchal, H.N., Shah, P.K. 2011. Effect of Varying Glass cover thickness on Performance of Solar still: in a Winter Climate Conditions. International Journal of Renewable Energy Research, 1(4), 212–223.
- 21. Park, C., Lim, B., Chung, K., Lee, S., Kim, Y. 2016. Experimental evaluation of hybrid solar still using waste heat, Desalination, 379, 1–9. https://doi.org/https://doi.org/10.1016/J.DESAL.2015.10.004
- 22. Peng, G., Sharshir, S.W., Hu, Z., Ji, R., Ma, J., Kabeel, A.E., Liu, H., Zang J., Yang., N. 2021. A compact flat solar still with high performance. International Journal of Heat and Mass Transfer, 179, 121657. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121657
- 23. Pugsley, A., Zacharopoulos, A., Mondol, J.D., Smyth, M. 2016. Global applicability of solar desalination. Renewable Energy, 88, 200–219. https://doi.org/10.1016/j.renene.2015.11.017
- 24. Reif, J.H., Alhalabi, W. 2015. Solar-thermal powered desalination: Its significant challenges and potential. Renewable and Sustainable Energy Reviews, 48, 152–165, https://doi.org/10.1016/j.rser.2015.03.065
- 25. Sakthivadivel, D., Balaji, K., Rufuss, D., Iniyan, S., Suganthi, L. 2021. Solar energy technologies: principles and applications. Renewable-EnergyDriven Future, 3–42. https://doi.org/https://doi.org/10.1016/B978-0-12-820539-6.00001-7
- 26. Selvaraj, K., Natarajan, A. 2018. Factors influencing the performance and productivity of solar stills - A review. Desalination, 435, 181–187. https://doi.org/https://doi.org/10.1016/J.DESAL.2017.09.031
- 27. Sharshir, S.W., Yang, N., Peng, G., Kabeel, A.E. 2016. Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267–284. https://doi.org/10.1016/j.applthermaleng.2015.11.041
- 28. Shelare, S., Kumar, R., Gajbhiye, T., Kanchan, S. 2023. Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges. Energies, 16(6), 2901. https://doi.org/10.3390/en16062901
- 29. Shukla, A., Kant, K., Sharma, A. 2017. Solar still with latent heat energy storage: A review. Innovative Food Science & Emerging Technologies, 41, 34–46. https://doi.org/10.1016/j.ifset.2017.01.004
- 30. Srithar, K., Rajaseenivasan, T. 2018. Recent fresh water augmentation techniques in solar still and HDH desalination – A review. Renewable and Sustainable Energy Reviews, 82(1), 629–644. https://doi.org/10.1016/j.rser.2017.09.056
- 31. Tavrel, M., Kostenko, V., Bohomaz, O., Kostenko, T., Zemlianskyi, О., Pidhornyy, M. 2022. Recirculating airlift for aeration of shallow water bodies. Ecological Engineering & Environmental Technology, 23(5), 177–187. https://doi.org/10.12912/27197050/152114
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-480df3ef-ec72-469c-8c9c-375eea7047d2