Warianty tytułu
Języki publikacji
Abstrakty
Hidden Markov models are widely applying in data classification. They are using in many areas where 1D data are processing. In the case of 2D data, appear some problems with applying 2D HMM. This paper describe the important limitations of HMM when we have to processing two dimensional data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
27--33
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
- Czestochowa University of Technology, Institute of Computer and Information Science
Bibliografia
- [1] Kanungo T. Hidden Markov Model Tutorial. www.cfar.umd.edu/~kanungo
- [2] Yujian Li. An analytic solution for estimating two models, Applied Mathematics and Computation 185(2007), pp.810
- [3] Rabiner L. R. A tutorial on hidden Markov models and selected application in speech recognition. Proc. IEEE 77, 1989, pp. 257
- [4] Hu J., Brown M. K., Turin W. HMM Based On IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 18 No.10 (1996) 1039-1045
- [5] Forney G. D. The Viterbi Algorithm, Proc. IEEE, Vol. 61 No. 3 (1973) 268
- [6] Eickeler S., Müller S., Rigoll G. High Performance Face Recognition Using Pseudo 2-D Hidden Markov Models, European Control Conference, 1999
- [7] Eickeler S., Müller S., Rigoll G. Recognition of JPEG compresed faceimages based on statistical methods, Image and Vision Computing 18(2000), pp. 279
- [8] Li J., Najmi A., Gray R. M. Image classification by a two dimensional Hidden Markov model, IEEE Trans. Signal Process. 48(2000), pp. 517--533.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47e7a027-77c4-4bdf-8a8d-61599ed70e1e