Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 2(114) | 71--81
Tytuł artykułu

Study of oxidative coupling of methane integrated with CO oxidation

Warianty tytułu
PL
Badanie procesu utleniającego sprzęgania metanu zintegrowanego z dopalaniem CO
Języki publikacji
EN
Abstrakty
EN
In this work, the process of OCM carried out over Mn-Na2WO4/SiO2 integrated with selective oxidation over Ag/support was investigated. The effect of feed gas composition and OCM bed temperature as well as the position of Ag/support bed and additional oxygen injection before this bed were investigated. At optimal OCM conditions for the Mn-Na2WO4/SiO2 catalyst (CH4/O2 = 3.75; Vtot = 77 cm3/min; T = 780°C), the injection of additional 4 cm3/min of oxygen into the bed of Ag/support (working at 250–300°C) leads to a preferential oxidation of CO to CO2.
PL
W pracy zbadano proces OCM w obecności Mn-Na2WO4/SiO2 zintegrowany w jednym reaktorze z procesem selektywnego utleniania CO prowadzonym na katalizatorze Ag/nośnik. Zbadano wpływ zmiany parametrów prowadzenia procesu OCM, takich jak skład surowca i temperatury oraz efekt dodatku tlenu nad złoże Ag/nośnik. Wykazano, że w optymalnej temperaturze pracy złoża OCM (CH4/O2 = 3.75; Vtot = 77 cm3/min; T = 780°C) wprowadzenie dodatkowo 4 cm3/min tlenu nad złoże Ag/nośnik (pracującego w temp. 250–300°C) prowadzi do preferencyjnego utleniania CO do CO2.
Wydawca

Rocznik
Strony
71--81
Opis fizyczny
Bibliogr. 43 poz., wz., tab., rys.
Twórcy
  • Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, bmichorczyk@chemia.pk.edu.pl
autor
  • Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
  • [1] Oxidative Coupling of Methane, http://siluria.com/Technology/Oxidative_Coupling_of_Methane (access: 11.04.16).
  • [2] Godini H.R., Xiao S., Jašo S., Stünkel S., Salerno D., Son N.X., Song S., Wozny G., Technoeconomic analysis of integrating the methane oxidative coupling and methane reforming processes, Fuel Processing Technology, vol. 106, 2013, 684–694.
  • [3] Michorczyk B., Ogonowski J., Michorczyk P., Węgrzyniak A., Katalizatory dla procesu utleniającego sprzęgania metanu, Przemysł Chemiczny, vol. 93, 2014, 1166–1173.
  • [4] Tiemersma T.P., Chaudhari A.S., Gallucci F., Kuipers J.A.M., van Sint Annaland M., Integrated autothermal oxidative coupling and steam reforming of methane. Part 1: Design of a dual-function catalyst particle, Chemical Engineering Science, vol. 82, 2012, 200–214.
  • [5] Tiemersma T.P., Chaudhari A.S., Gallucci F., Kuipers J.A.M., van Sint Annaland M., Integrated autothermal oxidative coupling and steam reforming of methane. Part 2: Development of a packed bed membrane reactor with a dual function catalyst, Chemical Engineering Science, vol. 82, 2012, 232–245.
  • [6] Tiemersma T.P., Kolkman T., Kuipers J.A.M., van Sint Annaland M., A novel autothermal reactor concept for thermal coupling of the exothermic oxidative coupling and endothermic steam reforming of methane, Chemical Engineering Journal, vol. 203, 2012, 223–230.
  • [7] Godini H.R., Xiao S., Kim M., Görke O., Song S., Wozny G., Dual-membrane reactor for methane oxidative coupling and dry methane reforming: Reactor integration and process intensification, Chemical Engineering and Processing, vol. 74, 2013, 153–164.
  • [8] Thybaut J. W., Marin G. B., Mirodatos C., Schuurman Y., van Veen A. C., Sadykov V. A., Pennemann H., Bellinghausen R., Mleczko L., A Novel Technology for Natural Gas Conversion by Means of Integrated Oxidative Coupling and Dry Reforming of Methane, Chemie Ingenieur Technik, vol. 86, 2014, 1855–1870.
  • [9] Godini H. R., Jaso S., Nghiem S. X., Görke O., Sadjadi S., Stünkel S., Song S., Simon U., Schomäcker R., Wozny G., Miniplant-Scale Analysis of Oxidative Coupling of Methane Process, Journal of Oil, Gas and Petrochemical Technology, vol. 2, 2015, 57–71.
  • [10] Skutil K., Taniewski M., Some technological aspects of methane aromatization (direct and via oxidative coupling), Fuel Processing Technology, vol. 87, 2006, 511–521.
  • [11] Skutil K., Taniewski M., Indirect methane aromatization via oxidative coupling, products separation and aromatization steps, Fuel Processing Technology, vol. 88, 2007, 877–882.
  • [12] Qiu P., Lunsford J.H., Rosynek M.P., Steady-state conversion of methane to aromatics in high yields using an integrated recycle reaction system, Catalysis Letters, vol. 48, 1997, 11–15.
  • [13] Graf P.O., Lefferts L., Reactive separation of ethylene from the effluent gas of methane oxidative coupling via alkylation of benzene to ethylbenzene on ZSM-5, Chemical Engineering Science, vol. 64, 2009, 2773–2780.
  • [14] Czechowicz D., Skutil K., Tórz A., Taniewski M., An integrated process of oxidative coupling of methane and pyrolysis of naphtha in a scaled-up unit, Journal of Chemical Technology and Biotechnology, vol. 79, 2004, 182–186.
  • [15] Wensheng C., Grant P., Process for producing acetic acid and/or ethanol by methane oxidation, Patent. WO 2014/143865 A1, Pub.18.09.2014.
  • [16] Ghareghashi A., Ghader S., Hashemipour H., Theoretical analysis of oxidative coupling of methane and Fischer Tropsch synthesis in two consecutive reactors: Comparison of fixed bed and membrane reactor, Journal of Industrial and Engineering Chemistry, vol. 19, 2013, 1811–1826.
  • [17] Xu L., Xie S., Liu S., Lin L., Tian Z., Zhu A., Combination of CH4 oxidative coupling reaction with C2H6 oxidative dehydrogenation by CO2 to C2H4, Fuel, vol. 81, 2002, 1593–1597.
  • [18] Xu L., Xie S., Liu S., Lin L., Tian Z., Zhu A., Combination of CH4 oxidative coupling reaction with C2H6 oxidative dehydrogenation by CO2 to C2H4, Fuel, 81, 2002, 1593–1597.
  • [19] Michorczyk B., Suszyński K., Smoleń P., Hędrzak E., Utleniające sprzęganie metanu zintegrowane w jednym reaktorze z odwodornieniem etanu do etenu, Przemysł Chemiczny, vol. 95, 2016, 1936–1940.
  • [20] Rekoske J.E., Oxidative coupling of methane with carbon conservation, Uop Llc, Glenview. USA. Patent. US006096934A. Pub.1.08.2000.
  • [21] Kalakkunnath S,. Oxidative Coupling of Methane to Ethylene by Siluria Process, https://chemical.ihs.com/PEP/Public/Reports/Phase_2014/RW2014-07/ (access: 11.04.16).
  • [22] Shi J., Lu Y., Hu Ch., Effect of CO2 on the structural variation of Na2WO4/Mn/SiO2 catalyst for oxidative coupling of methane to ethylene, Journal of Energy Chemistry, vol. 24, 2015, 394–400.
  • [23] Litawa B., Michorczyk P., Ogonowski J,. Influence of CO2 on the catalytic performance of La2O3/CeO2 and CaO/CeO2 catalysts in the oxidative coupling of methane, Polish Journal of Chemical Technology, vol 15, 2013, 22–26.
  • [24] Xu Y., Yu L., Cai C., Huang J., Guo X., a study of the oxidative coupling of methane over SrO-La2O3/CaO catalysts by using CO2 as a probe, Catal. Lett., vol. 35, 1995, 215–231.
  • [25] Kolts JH., Kukes S.G., Catalytic oxidation of carbon monoxide, USA. Patent. 4808394. Pub.28.02.1989.
  • [26] Kahlich M.J., Gasteiger A., Behm R.J., Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3, Journal of Catalysis, vol. 171, 1997, 93–105.
  • [27] Mariño F., Descorme C., Duprez D., Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX), Applied Catalysis B: Environmental, vol. 54, 2004, 59–66.
  • [28] Oh S.H., Sinkevitch R.M., Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation, Journal of Catalysis, vol. 142, 1993, 254–262.
  • [29] Avgouropoulos G., Ioannides T., Papadopoulou Ch., Batista J., Hocevar S., Matralis H.K., A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, vol. 75, 2002, 157–167.
  • [30] Bethke G.K., Kung H.H., Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts, Applied Catalysis A: General, vol. 194, 2000, 43–53.
  • [31] Grisel R.J.H., Nieuwenhuys B.E., Selective Oxidation of CO, over Supported Au Catalysts, Journal of Catalysis, vol. 199, 2001, 48–59.
  • [32] Bond G.C., Thompson D.T., Gold-Catalysed Oxidation of Carbon Monoxide, Gold Bulletin, vol. 33, 2000, 41–50.
  • [33] Sun X., Su H., Lin Q., Han Ch., Zheng Y., Sun L., Qi C., Au/Cu–Fe–La–Al2O3: a highly active, selective and stable catalysts for preferential oxidation of carbon monoxide, Applied Catalysis A: General, vol. 527, 2016, 19–29.
  • [34] Teng Y., Sakurai H., Ueda A., Kobayashi T., Oxidative removal of co contained in hydrogen by using metal oxide catalysts, International Journal of Hydrogen Energy, vol. 24, 1999, 355–358.
  • [35] Liu W., Flytzani-Stephanopoulos M., Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I. Catalyst Composition and Activity, Journal of Catalysis, vol. 153, 1995, 304–316.
  • [36] Liu W., Flytzani-Stephanopoulos M., Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: II. Catalyst Characterization and Reaction-Kinetics, Journal of Catalysis, vol. 153,1995, 317–332.
  • [37] Avgouropoulos G., Ioannides T., Matralis H. K ., Batista J., Hocevar S., CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Letters Vol. 73, 2001, 33–40.
  • [38] Hung-Kuan Lin H-K., Chiu H-Ch., Tsai H-Ch., Chien S-H., Wang Ch-B., Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide, Catalysis Letters, vol. 88, 2003, 169–174.
  • [39] Wangcheng Z., Xinye Z., Yanglong G., Li W., Yun G., Guanzhong L., Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation, Journal of Rare Earths, Vol. 32, 2014, 146–152.
  • [40] Li Z., Hound G.B., a Review on Complete Oxidation of Methane at Low Temperatures, Journal of Natural Gas Chemistry, vol. 12, 2003, 153–160.
  • [41] Stasinska B., Katalityczne utlenianie metanu z powietrza wentylacyjnego kopalń, https://www.researchgate.net/publication/267544218 (access: 11.04.16).
  • [42] Qu Z., Cheng M., Huang W., Bao X., Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts, Journal of Catalysis, vol. 229, 2005, 446–458.
  • [43] Imamura S., Yamada H., Utani K., Combustion activity of Ag/CeO2 composite catalyst, Applied Catalysis A: General, vol. 192, 2000, 221–226.
Uwagi
EN
Section "Chemistry"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47ce3f02-6810-4efe-9eb4-ab8e589fcf92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.