Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 5 | 198--207
Tytuł artykułu

Microclimate Thermal Control for Open-Air Areas

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal comfort in openair situations is a difficult industrial task. In literature there were insufficient studies on how to control the external microclimate in a region, and there are many activities outside the house in open areas that require temperature control, such as the stadiums in hot humid countries, and tourism, and recreational areas in humid and hot climates. Openair conditioning requires huge amount of energy, that negatively affects the global warming of the earth. To reduce energy consumption microclimate control is proposed. Isolation of the controlled area is performed to reduce the amount of air-conditioned load. In this project the air conditioning of an external open area will be studied. Wind tunnel with two air flows at different temperatures, relative humilities, angle of attach and velocities will be constructed. The two flows will be allowed to intersect to gather at different conditions (different wind speeds ranging from 1 to 7 m/s, as well as a jet flow about 1 m/s and angles 60 to 90 degrees) to construct an isolation Dom for the targeted outside open area. An open area with the use of cross flow that stops the local wind speed in the targeted area and allows to keep the conditioned air for a long time in the open space. This method allows to save huge energy used continuously for the air-conditioning purpose.
Wydawca

Rocznik
Strony
198--207
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, Amman, Jordan
  • Renewable Energy Engineering Department, Middle East University, Jordan
autor
  • College of Engineering, Zarqa University, Zarqa, Jordan
  • College of Engineering, University of Business and Technology, Jeddah, Saudi Arabia
  • 6 Mechatronics Engineering Department, Philadelphia University, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan
  • Department of Thermal Science, Wrocław University of Science and Technology, Wrocław, Poland
  • Department of Mechanical Engineering, Tafila Technical University, P.O. Box 179, 66110, Tafila, Jordan, sameh@wp.pl
Bibliografia
  • 1. Ahmed, S., Hart, J., Nikolov, J., Solnordal, C., Yang, W. and Naser, J. 2007. The effect of jet velocity ratio on aerodynamics of a rectangular slot-burner in the presence of cross-flow. Experimental Thermal and Fluid Science, 32(2), 362–374. https://doi.org/10.1016/j.expthermflusci.2007.04.011
  • 2. Amin, M., Dabiri, D. and Navaz, H.K. 2011. Comprehensive study on the effects of fluid dynamics of air curtain and geometry, on infiltration rate of open refrigerated cavities. Applied Thermal Engineering, 31(14-15), 3055–3065. https://doi.org/10.1016/j.applthermaleng.2011.05.039
  • 3. Andreopoulos, J., and Rodi, W. 1984. Experimental investigation of jets in a crossflow. Journal of fluid Mechanics, 138, 93-127.
  • 4. Barata, J.M.M. and Durao, D.F.G. 2004. Laser-Doppler measurements of impinging jet flows through a crossflow. Experiments in Fluids, 36(5), 665– 674. https://doi.org/10.1007/s00348-003-0737-3
  • 5. Bidan, G. and Nikitopoulos, D.E. 2013. On steady and pulsed low-blowing-ratio transverse jets. Journal of Fluid Mechanics, 714, 393-433.
  • 6. Broadwell, J.E. and Breidenthal, R.E. 1984. Structure and mixing of a transverse jet in incompressible flow. Journal of Fluid Mechanics, 148, 405-412.
  • 7. Cambonie, T. and Aider, J.-L. 2014. Transition scenario of the round jet in crossflow topology at low velocity ratios. Physics of Fluids, 26(8), 084101. https://doi.org/10.1063/1.4891850
  • 8. Cambonie, T., Gautier, N. and Aider, J.L. 2013. Experimental study of counter-rotating vortex pair trajectories induced by a round jet in cross-flow at low velocity ratios. Experiments in Fluids, 54, 1-13.
  • 9. Chauvat, G., Peplinski, A., Henningson, D.S. and Hanifi, A. 2020. Global linear analysis of a jet in cross-flow at low velocity ratios. Journal of Fluid Mechanics, 889. https://doi.org/10.1017/jfm.2020.85
  • 10. Chen, W., Zhang, H., Arens, E., Luo, M., Wang, Z., Jin, L., et al. 2020. Ceiling-fan-integrated air conditioning: airflow and temperature characteristics of a sidewall-supply jet interacting with a ceiling fan. Building and Environment, 106660. https://doi.org/10.1016/j.buildenv.2020.106660
  • 11. Fan, Y. 2020. Mathematical and experimental analysis of the thermal effectiveness of an oscillating jet with side-to-side swing louvers in a cassette split type air conditioner. Indoor and Built Environment, 29(2), 240-254. https://doi.org/10.1177/1420326x19855418
  • 12. Frank, D. and Linden, P.F. 2014. The effectiveness of an air curtain in the doorway of a ventilated building. Journal of Fluid Mechanics, 756, 130–164. https://doi.org/10.1017/jfm.2014.433
  • 13. Gaspar, P.D., Gonçalves, L.C.C. and Vögeli, A 2009. Dependency of air curtain performance on discharge air velocity (grille and back panel) in open refrigerated display cabinets. Vol. 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C. https://doi.org/10.1115/imece2009-11029
  • 14. Kalifa, R.B., Habli, S., Saïd, N.M., Bournot, H. and Le Palec, G. 2014. Numerical and experimental study of a jet in a crossflow for different velocity ratio. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(4), 743–762. https://doi.org/10.1007/s40430-014-0129-z
  • 15. Kareeva, Y.R., Posokhin, V.N., Safiullin, R.G. and Bliznyakova, K.A. 2020. Study of air jet characteristics in air-conditioned rooms. In: MATEC Web of Conferences, EDP Sciences, 324, 03009.
  • 16. Khayrullina, A., Blocken, B., Magalhães de Almeida, M.O., van Hooff, T. and van Heijst, G. 2021. Impact of a wall downstream of an air curtain nozzle on air curtain separation efficiency. Building and Environment, 197, 107873. https://doi.org/10.1016/j.buildenv.2021.107873
  • 17. Khayrullina, A., van Hooff, T., Alanis Ruiz, C., Blocken, B. and van Heijst, G. 2020. Minimum momentum flux ratio required to prevent air curtain breakthrough in case of cross-curtain pressure gradients: CFD versus analytical equation. Building Simulation. https://doi.org/10.1007/s12273-020-0633-2
  • 18. Klotz, L., Gumowski, K., and Wesfreid, J.E. 2019. Experiments on a jet in a crossflow in the low-velocity-ratio regime. Journal of Fluid Mechanics, 863, 386–406. https://doi.org/10.1017/jfm.2018.974
  • 19. Kristo, P.J. and Kimber, M.L. 2021. Cylinders and jets in crossflow: Wake formations as a result of varying geometric proximities. Physics of Fluids, 33(5), 055106. https://doi.org/10.1063/5.0047790
  • 20. Lucio, P.S. and Gomes, A.C. 2023. Human outdoor thermal comfort analysis for the Qatar 2022 FIFA World Cup’s climate. SN Applied Sciences, 5(1), 47.
  • 21. Mahesh, K. 2013. The interaction of jets with crossflow. Annual Review of Fluid Mechanics, 45(1), 379–407. https://doi.org/10.1146/annurev-fluid-120710-101115
  • 22. Mörtberg, M., Blasiak, W. and Gupta, A.K. 2007. Experimental investigation of flow phenomena of a single fuel jet in cross-flow during highly preheated air combustion conditions.‏ Journal of Engineering for Gas Turbines and Power, 129(2), 556-564. https://doi.org/10.1115/1.2436558
  • 23. Ostermann, F., Woszidlo, R., Nayeri, C.N. and Paschereit, C.O. 2019. The interaction between a spatially oscillating jet emitted by a fluidic oscillator and a cross-flow. Journal of Fluid Mechanics, 863, 215–241. https://doi.org/10.1017/jfm.2018.981
  • 24. Ruiz, C.A., van Hooff, T., Blocken, B. and van Heijst, G. 2023. Influence of cross-jet temperature and pressure differences on the separation efficiency of air curtains in buildings. Journal of Wind Engineering and Industrial Aerodynamics, 233, 105300.
  • 25. Shoshe, M.A.M.S. and Rahman, M.A. 2019. Effectiveness of air curtains as thermal and smoke barrier against high gradients of flow parameters. In: Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering (MCM’19), Lisbon, Portugal.
  • 26. Song, L., Li, K., Zhang, X., Hua, J. and Zhang, C. 2023. Differentiated control of large spatial environments: Air curtain grid system. Sustainability, 15(6), 5489.
  • 27. Viegas, J.C., Kaluzny, P., Durand, A., Fluchaire, L., Franco, D., Saldanha, C., et al. 2021. Full-size experimental assessment of the aerodynamic sealing of air curtains for particulate matter. Building Services Engineering Research and Technology, 42(2), 175- 195. https://doi.org/10.1177/0143624420976400
  • 28. Wang, C., Wang, Z., Wang, L., Luo, L. and Sundén, B. 2019. Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. International Journal of Heat and Mass Transfer, 135, 935–949. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.024
  • 29. Wang, Z., Wu, L., Li, Q. and Li, C. 2014. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow. Applied Physics Letters, 105(13), 134102. https://doi.org/10.1063/1.4893008
  • 30. Zhong, F., Chaudhry, H.N. and Calautit, J.K. 2021. Effect of roof cooling and air curtain gates on thermal and wind conditions in stadiums for hot climates. Energies, 14, 3941. https://doi.org/10.3390/en141339
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47bc586f-e4a5-4d78-9b05-05de3b7bc308
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.