Czasopismo
2013
|
Vol. 46, nr 4
|
757--780
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to prove common fixed point theorems for a family of mappings in symmetric spaces using the property (E.A) and weak compatibility or occasionally weak compatibility. Our results extend some recent results.
Czasopismo
Rocznik
Tom
Strony
757--780
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Department of Mathematics, University of Larbi Tebessi Tebessa, 12000 Algeria, faycel_mr@yahoo.fr
autor
- Université de Bretagne Occidentale, Laboratoire de Mathématiques de Brest, Unité CNRS: UMR 6205 Avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3 France, christiane.godet-thobie@univ-brest.fr
Bibliografia
- [1] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 270(1) (2002), 181–188.
- [2] M. Aamri, D. El Moutawakil, Common fixed points under contractive conditions in symmetric spaces, Appl. Math. E-Notes 3 (2003), 156–162.
- [3] M. A. Al-Thagafi, N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867–876.
- [4] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal. Appl. 322(2) (2006), 796–802.
- [5] A. Aliouche, Common fixed point theorems via an implicit relation and new properties, Soochow J. Math. 33(4) (2007), 593–601.
- [6] I. Altun, D. Turkoglu, B. Rhoades, Fixed points of weakly compatible mappings satisfying a general contractive condition of integral type, Fixed Point Theory and Applications., Volume 2007 (2007), Article ID 17301, 9 pages.
- [7] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531–536.
- [8] A. Djoudi, A. Aliouche, A general common fixed point theorems for reciprocally continuous mappings satisfying an implicit relation, Austral. J. Math. Anal. Appl. 3 (2006), 1–7.
- [9] A. Djoudi, A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type, J. Math. Anal. Appl. 329(1) (2007), 31–45.
- [10] A. Djoudi, F. Merghadi, Common fixed point theorems for maps under a contractive condition of integral type, J. Math. Anal. Appl. 341(2) (2008), 953–960.
- [11] U. C. Gairola, A. S. Rawat, A fixed point theorem for integral type inequality, Int. J. Math. Anal. 2(15) (2008), 709–712.
- [12] M. Imdad, J. Ali, L. Khan, Coincidence and fixed points in symmetric spaces under strict conditions, J. Math. Anal. Appl. 320 (2006), 352–360 and 329 (2009), 752.
- [13] M. Imdad, J. Ali, Jungck’s common fixed point theorem and E.A. property, Acta Math. Sinica, English series 24(1) (2008), 87–94.
- [14] K. Jha, Common fixed point for weakly compatible maps in metric space, Kathmandu. U. J. S., Engineering and Technology 1(4) (2007).
- [15] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(4) (1986), 771–779.
- [16] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4(2) (1996), 199–215.
- [17] G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps, Internat. J. Math. Math. Sci. 16(3) (1993), 417–428.
- [18] G. Jungck, B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory 7(2) (2006), 287–296 and 9(1) (2008), 383–384.
- [19] J. K. Kohli, S. Vashistha, Common fixed point theorems for compatible and weakly compatible mappings satisfying general contractive type conditions, Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău 16 (2006), 33–42.
- [20] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436–440.
- [21] R. P. Pant, Common fixed points for four mappings, Bull. Calcutta Math. Soc. 9 (1998), 281–286.
- [22] R. P. Pant, Common fixed point theorem under a new condition, Indian J. Pure. Appl. Math. 30(2) (1999), 147–152.
- [23] R. P. Pant, A new common fixed point principle, Soochow. J. Math. 27(3) (2001), 287–297.
- [24] H. K. Pathak, R. R. Lopez, R. K. Verma, A common fixed point theorem using implicit relation and property (E.A) in metric spaces, Filomat 21(2) (2007), 211–234.
- [25] H. K. Pathak, R. Tiwari, M. S. Khan, A common fixed point theorem satisfying integral type implicit relations, Appl. Math. E-Notes 7 (2007), 222–228.
- [26] H. K. Pathak, R. K. Verma, Weakly compatible mappings and Altman type contraction, Filomat 22(1) (2008), 31–44.
- [27] V. Popa, A general fixed point theorem for weakly compatible mappings in compact metric spaces, Turkish J. Math. 25 (2001), 465–474.
- [28] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003), 4007–4013.
- [29] K. Sastry, I. Murthy, Common fixed points of two partially commuting tangential selmaps on a metric space, J. Math. Anal. Appl. 250 (2000), 731–734.
- [30] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 149–153.
- [31] S. L. Singh, S. N. Mishra, Remarks on recent fixed point theorems and applications to integral equations, Demonstratio Math. 34 (2001), 847–857.
- [32] P. Vijayaraju, B. E. Rhoades, R. Mohanraj, A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 15 (2005), 2359–2364.
- [33] W. A. Wilson, On semi-metric spaces, Amer. J. Math. 53 (1931), 361–373.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47ba29f2-c15a-4f6b-9ee0-e2ac06f0094e