Warianty tytułu
Języki publikacji
Abstrakty
In the present study, we address an important and increasingly relevant topic in mining safety and efficiency, namely the stability of open-pit bench slopes subjected to daily heavy truck cyclic loading. Specifically, we focus on the stability of Zhahanur open-pit slope (Inner Mongolia region, China) and investigate the potential role of daily heavy truck cyclic loading in bench slope instability. To this end, we incorporate a stress corrosion model into the particle flow code to develop a time-dependent deformation model of the rock. With the established model, we quantitatively analyse the effect of heavy truck cyclic loading on the bench slope stability. Our results support the hypothesis that daily heavy truck loading can cause gradual downward deformation of a rock mass, leading to slope instability. To validate our numerical modelling results, we compare and analyse them with in situ monitoring data. Our study demonstrates the significant impact of daily heavy vehicles on bench slope stability in open-pit mines and provides a practical tool for assessing the long-term stability of open-pit bench slopes and optimising mining operations.
Czasopismo
Rocznik
Tom
Strony
211--230
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China & Jarud Banner Zhahanur Coal Industry Co. Ltd, Jarud Banner 029100, China
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- Coal Mine Center, SPIC Inner Mongolia Energy Co. Ltd., Inner Mongolia, China
autor
- Jarud Banner Zhahanur Coal Industry Co. Ltd, Jarud Banner 029100, China
autor
- College of Sport, Health and Engineering, Victoria University Melbourne, VIC 3011, Australia
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China, xutao@mail.neu.edu.cn
Bibliografia
- [1] R .L. Collins, Frequency Response of Tires Using the Point Contact Theory. Journal of Aircraft 9 (6), 427-432(1972). DOI: https://doi.org/10.2514/3.59007.
- [2] K.H. Guo, G.F. Ding, Analysis of tire inclusion characteristics and its application in vehicle vibration systemmodeling. Automotive Engineering 02, 65-71+80 (1999).DOI : https://doi.org/10.19562/j.chinasae.qcgc.1999.02.001.
- [3] B . Li, Y.F. Gao, D.X. Wei, H.L. Liu, Research on influential depth of vehicle loads and its influencing factors.Yantu Lixue/Rock and Soil Mechanics 26, 310-313 (2005). DOI: https://doi.org/10.16285/j.rsm.2005.s1.074.
- [4] G . Lan, W. Xu, L. Guo, S. Shi, Research on kinetic effect of vehicular load on subgrade. Journal of ChengduUniversity (Natural Science Edition) 29, (04) 346-348 (2010).
- [5] T . Kokusho, T. Ishizawa, K. Koizumi, Energy approach to seismically induced slope failure and its application tocase histories. Engineering Geology 122 (1-2), 115-128 (2011).DOI : https://doi.org/10.1016/j.enggeo.2011.03.019.
- [6] J . Wartman, R.B. Seed, J.D. Bray, Shaking table modeling of seismically induced deformations in slopes. Journalof Geotechnical and Geoenvironmental Engineering 131 (5), 610-622 (2005).DOI : https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(610).
- [7] S.W. Sloan, Lower bound limit analysis using finite elements and linear programming. International Journal forNumerical and Analytical Methods in Geomechanics 12 (1), 61-77 (1988).DOI: https://doi.org/10.1002/nag.1610120105.
- [8] D . Loukidis, P. Bandini, R. Salgado, Stability of seismically loaded slopes using limit analysis. Géotechnique 53(5), 463-479 (2003). DOI: https://doi.org/10.1680/geot.2003.53.5.463.
- [9] G .H. Kim, K.Z. Cho, I.B. Chyun, G.S. Choi, Dynamic stress analysis of vehicle frame using a nonlinear finiteelement method. Ksme International Journal 17 (10), 1450-1457 (2003).DOI : https://doi.org/10.1007/bf02982324.
- [10] X. Li, Finite element analysis of slope stability using a nonlinear failure criterion. Computers and Geotechnics 34(3), 127-136 (2007). DOI: https://doi.org/10.1016/j.compgeo.2006.11.005.
- [11] F. Liu, J. Zhao, Limit analysis of slope stability by rigid finite-element method and linear programming consideringrotational failure. International Journal of Geomechanics 13 (6), 827-839 (2013).DOI : https://doi.org/10.1061/(ASCE)GM.1943-5622.0000283.
- [12] G .X. Zhang, Z.X. Yuan, N. Wang, Z.Z. Zhang, P. Gao, Dynamic Response Analysis of Compaction Loess Subgrade.Construction and Urban Planning, PTS 1-4, 2013.202-208.
- [13] X.G. Yang, S.C. Chi, Seismic stability of earth-rock dams using finite element limit analysis. Soil Dynamics andEarthquake Engineering 64, 1-10 (2014). DOI: https://doi.org/10.1016/j.soildyn.2014.04.007.
- [14] M. Blundell, D. Harty, Chapter 4 – Modelling and Analysis of Suspension Systems. In: M. Blundell, D. Harty(Eds.), The Multibody Systems Approach to Vehicle Dynamics (Second Edition), Butterworth-Heinemann, Oxford,2015.185-334.
- [15] Y. Zhang, H. Jiang, G. Bai, B. Han, Coupling action of rainfall and vehicle loads impact on the stability of loessslopes based on the iso-water content layer. Earthquake Research Advances 2 (3), (2022).DOI : https://doi.org/10.1016/j.eqrea.2022.100143.
- [16] L.A. Mejia Camones, E.d.A. Vargas, Jr., R.P. de Figueiredo, R.Q. Velloso, Application of the discrete elementmethod for modeling of rock crack propagation and coalescence in the step-path failure mechanism. EngineeringGeology 153, 80-94 (2013). DOI: https://doi.org/10.1016/j.enggeo.2012.11.013.
- [17] S.S. Behbahani, P. Moarefvand, K. Ahangari, K. Goshtasbi, Unloading scheme of Angooran mine slope by discreteelement modeling. International Journal of Rock Mechanics and Mining Sciences 64, 220-227 (2013).DOI : https://doi.org/10.1016/j.ijrmms.2013.08.018.
- [18] D . Song, H. Du, Numerical Investigation of the Evolution Process of an Open-Pit Mine Landslide Using Discrete-Element Method. International Journal of Geomechanics 23 (6) (2023).DOI : https://doi.org/10.1061/ijgnai.gmeng-7568.
- [19] Z.Y. Yan, H.E. Ge, J.H. Zhang, X.Q. Wang, G.F. Zhao, Research on vehicle-asphalt pavement interaction andmicro-structure by discrete element method. Mechanics of Advanced Materials and Structures 29 (27), 6803-6813(2022). DOI: https://doi.org/10.1080/15376494.2021.1985664.
- [20] D . Zhang, C.Y. Wu, L.L. Cai, J. Bian, C.E. Yin, Discrete Element Modeling of the Meso-Mechanical Response ofAsphalt Pavement under Vehicle Load. Materials 15 (21) (2022).DOI : https://doi.org/10.3390/ma15217808.
- [21] E.T. Brown, J.A. Hudson, Fatigue failure characteristics of some models of jointed rock. Earthquake Engineering& Structural Dynamics 2 (4), 379-386 (1973). DOI: https://doi.org/10.1002/eqe.4290020407.
- [22] S. Yang, Y. Tao, J. Tang, Experimental study of triaxial strength and deformation of single jointed sandstone undercycle loading. Journal of China University of Mining & Technology 49 (05), 819-825 (2020).DOI : https://doi.org/10.13247/j.cnki.jcumt.001163.
- [23] Y.Y. Cai, X. Tang, L.H. Lin, H.L. Chen, F.D. Gao, G. Li, J. Yu, Strain rate response of damage accumulation ofmarble under fatigue loading. Chinese Journal of Geotechnical Engineering 42 (05), 827-836 (2020).DOI : https://doi.org/10.11779/CJGE202005004.
- [24] M. Ghamgosar, N. Erarslan, D.J. Williams, Experimental Investigation of Fracture Process Zone in Rocks DamagedUnder Cyclic Loadings. Experimental Mechanics 57 (1741-2765), 97-113 (2017).DOI : https://doi.org/10.1007/s11340-016-0216-4.
- [25] M. Ghamgosar, N. Erarslan, D.J. Williams, Experimental Investigation of Fracture Process Zone in Rocks DamagedUnder Cyclic Loadings. Experimental Mechanics 5 (1), 97-113 (2017).DOI : https://doi.org/10.1007/s11340-016-0216-4.
- [26] B .K. Atkinson, Subcritical crack growth in geological materials. Journal of Geophysical Research: Solid Earth 89(B6), 4077-4114 (2012). DOI: https://doi.org/10.1029/JB089iB06p04077.
- [27] N . Brantut, P. Baud, M.J. Heap, P.G. Meredith, Micromechanics of brittle creep in rocks. Journal of GeophysicalResearch. Solid Earth 11 7(8) (2012). DOI: https://doi.org/10.1029/2012jb009299.
- [28] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Géotechnique 16 (4), 47-65(1979). DOI: https://doi.org/10.1016/0148-9062(79)91211-7.
- [29] B . Zhao, T. Xu, S.Q. Yang, T.F. Fu, Experimental and numerical study of fatigue damage of highly stressed rocksunder cyclic loading. Journal of Central South University (Science and Technology) 52 (08), 2725-2735 (2021).DOI: https://doi.org/10.11817/j.issn.1672-7207.2021.08.019.
- [30] G .H. Hu, T. Xu, C.F. Chen, X.K. Yang, A microscopic study of creep and fracturing of brittle rocks based ondiscrete element method. Engineering Mechanics 35 (09), 26-36 (2018).DOI : https://doi.org/10.6052/j.issn.1000-4750.2017.05.0356.
- [31] D .O. Potyondy, Simulating stress corrosion with a bonded-particle model for rock. International Journal of RockMechanics and Mining Sciences 44 (5), 677-691 (2007). DOI: https://doi.org/10.1016/j.ijrmms.2006.10.002.
- [32] Z.H. Dang, Z.M. Yin, D.S. Wang, M.Y. Fu, Q. Yin, Experimental Study on the Calibration of Microparameters ofDolomite in the Barun Open-Pit Mine on the Basis of the Parallel Bond Model. Advances In Civil Engineering2021 (2021). DOI: https://doi.org/10.1155/2021/1267536.
- [33] Z.J. Ma, G. Mei, E. Prezioso, Z. Zhang, N.X. Xu, A deep learning approach using graph convolutional networksfor slope deformation prediction based on time-series displacement data. Neural Computing and Applications 33(21), 14441-14457 (2021). DOI: https://doi.org/10.1007/s00521-021-06084-6.
- [34] M. Cross, Sensitivity analysis of shallow planar landslides in residual soils on south Pennine hillslopes. Derbyshire,UK, Bulletin of Engineering Geology and the Environment 78 (3), 1855-1872 (2019).DOI : https://doi.org/10.1007/s10064-017-1195-0.
- [35] O labode, O. Peter, San, H. Lim, Hydrogeological Assessment of Hydraulic Conductivity on Gully Formation inErosion Degraded Residual Soil of an Unstable Slope. Indian Geotechnical Journal (prepublish) (2022).
- [36] F.Y. Zhang, G. Liu, W.W. Chen, S.Y. Liang, R.S. Chen, W.F. Han, Human-induced landslide on a high cut slope:a case of repeated failures due to multi-excavation. Journal of Rock Mechanics and Geotechnical Engineering 4(04), 367-374 (2012). DOI: https://doi.org/10.3724/SP.J.1235.2012.00367.
- [37] E.A.G. Marques, D.J. Williams, I.R. Assis, M.F. Leão, Effects of weathering on characteristics of rocks in a subtropicalclimate: weathering morphology, in situ, laboratory and mineralogical characterization. EnvironmentalEarth Sciences 76 (17), 602 (2017). DOI: https://doi.org/10.1007/s12665-017-6936-7.
- [38] T . Bracko, B. Zlender, P. Jelusic, Implementation of Climate Change Effects on Slope Stability Analysis. AppliedSciences-Basel 12 (16), (2022). DOI: https://doi.org/10.3390/app12168171.
- [39] Z.X. Yan, C.M. Yan, H.Y. Wang, Mechanical interaction between roots and soil mass in slope vegetation. ScienceChina Technological Sciences 53 (11), 3039-3044 (2010). DOI: https://doi.org/ 10.1007/s11431-010-4137-7.
- [40] W.B. Zan, W.J. Zhang, N. Wang, C.C. Zhao, Q. Yang, H. Li, Stability analysis of complex terrain slope based onmulti-source point cloud fusion. Journal of Mountain Science 19 (9), 2703-2714 (2022).DOI : https://doi.org/10.1007/s11629-022-7307-8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47b70a0c-5659-4336-80f2-f124e99f368d