Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 39, no. 3 | 599--612
Tytuł artykułu

Cerebral edema segmentation using textural feature

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diagnostic imaging provides a vital tool in detection and analysis of Brain pathologies. Magnetic resonance imaging (MRI) provides an effective means for non-invasive mapping of anatomy and pathology in the brain. Pathologies like cerebral edema and tumors can spread in different tissues in the brain and can affect cognitive and other functions in the body. Accurate segmentation is therefore a challenging task. Human Brain consists of different soft tissues. These tissues can be characterized using different textures. The work presents an automatic method for segmentation using textural feature of the MR image. The texture of MR image is exploited using the gray co-occurrence matrix (GLCM). GLCM creates a textural feature map by taking into account the spatial dependence of the pixels and its angular relationship between the neighboring cell pairs. Local entropy as second order textural feature is used to capture the texture of MR image. Entropy computes the randomness in pixel intensities and helps in defining a unique texture of edema for segmentation. The marked contrast enhancement obtained in FLAIR sequence of the MR image is captured as textural information by local entropy and GLCM combination. The proposed method obtains a definite textural signature of edema as well as tumor for threshold selection. Experiments on publically available BRATS database yields an average accuracy of 96%, specificity of 97%, sensitivity of 61%, Dice Coefficient as 50% and structural similarity index of 0.88 for edema. The proposed method demonstrates encouraging results in automatic segmentation of edema as well as tumor core.
Wydawca

Rocznik
Strony
599--612
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
  • Department of Instrumentation Engineering, Vishwakarma Institute of Technology, 666 Upper Indira Nagar, Bibwewadi, Pune 411037, India, jayant.kulkarni@vit.edu
Bibliografia
  • [1] Adukauskiene D, Bivainyte A, Radavieiute E. Cerebral edema and its treatment. Medicina (Kaunas) 2017;43(2).
  • [2] Chen M-Y, Hu1 Q-M, Liu Z-C, Zhou1 S-J, Li X-D. Segmentation of cerebral edema around spontaneous intracerebral hemorrhage. Int J Appl Math Inf Sci 2013. Natural Sciences Publishing Cor..
  • [3] Norton NS. Cerebral edema. Ref Module Biomed Sci 2014.
  • [4] Castro P, Azevedo E, Serrador J, Rocha I, Sorond F. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: link to cerebral autoregulation. J Neurol Sci 2017;372(15):256–61.
  • [5] Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain Tumor Segmentation with Deep Neural Networks Medical Image Analysis, vol. 35. 2017;p. 18–31.
  • [6] Gilanie G, Attique M, Ullah H, Naweed S, Ahmed E, Ikram M. Object extraction from T2 weighted brain MR image using histogram based gradient calculation. Pattern Recognit Lett 2013;34:1356–63.
  • [7] Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Resonance Imaging Vol 2013;31(8):1426–38.
  • [8] Yao J. Image processing in tumor imaging. New Tech Oncol Imaging 2006;79–102.
  • [9] Wu CM, Chen YC. Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging 1992;11:141–52.
  • [10] Miller P, Astley S. Classification of breast tissue by texture analysis. Image Vision Comput 1992;10:277–82.
  • [11] Koss JE, Newman FD, Johnson TK, Krich DL. Abdominal organ segmentation using texture transform and Hopfield neural network. IEEE Trans Med Imaging 1999;18:640–8.
  • [12] Xie J, Jiang Y, Tsui HT. Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans Med Imaging 2005;24:45–57.
  • [13] Pal N, Pal S. Entropic thresholding. Signal Process 1989;16:97–108.
  • [14] Cover T0, Thomas J, Wiley J, InterScience W. Elements of Information Theory. New York: Wiley; 1991.
  • [15] Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S. Entropy based segmentation of tumor from brain MR images – a study with teaching learning based optimization. Pattern Recognit Lett 2017;1–9.
  • [16] Chaudhari AK, Kulkarni JV. Local entropy based brain MR image segmentation. IEEE 3rd International Advance Computing Conference (IACC); 2013. http://dx.doi.org/10.1109/IAdCC.2013.6514403.
  • [17] Priya RK, Thangaraj C, Kesavadas C, Kannan S. Fuzzy entropy based MR brain image segmentation using modified particle swarm optimization. Int J Imaging Syst Technol 2013;23(4):281–8.
  • [18] Priya RK, Thangaraj C, Kesavadas C, Kannan S. Application of swarm intelligence in fuzzy entropy based image segmentation. Stud Comput Intell 2014;561:227–45.
  • [19] Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated diagnosis of epilepsy using EEG signals. Knowl Based Syst 2015;88(C): 85–96.
  • [20] Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 2005;80(3):187–94.
  • [21] Pun T. A new method for gray level picture thresholding using entropy of the histogram. Signal Process 1980;223–7.
  • [22] Pun T. Entropic thresholding: a new approach. Comput Graphics Image Process 1981;210–39.
  • [23] Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graphics Image Process 1985;29:273–85.
  • [24] Bhandari AK, Kumar A, Singh GK. Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions. Expert Syst Appl 2015;42(3):1573–601.
  • [25] Sathya PD, Kayalvizhi R. Optimal multilevel thresholding using bacterial for aging algorithm. Expert Syst Appl 2011; 38(12):15549–64.
  • [26] Sahoo P, Wilkins C, Yeager J. Threshold selection using Renyi's entropy. Pattern Recognit 1997;30(1):71–84.
  • [27] Chang C, Chen K, Wang J, Althouse LJ. A relative entropy- based approach to image thresholding. Pattern Recognit 1994;27(9):1275–89.
  • [28] Pal NR. On minimum cross-entropy thresholding. Pattern Recognit 1996;29(4):575–80.
  • [29] Brink AD, Pendock NE. Minimum cross-entropy threshold selection. Pattern Recognit 1996;29(1):179–88.
  • [30] Chen W-T, Wen C-H, Yang C-W. A fast two-dimensional entropic thresholding algorithm. Pattern Recognit 1994; 27(7):885–93.
  • [31] Li CH, Tam PKS. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett Vol 1998;19 (8):771–6.
  • [32] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 1998;52:479–87.
  • [33] Mohamed A, El-Sayed S, Abdel-Khalek, Abdel-Aziz E. Study of efficient technique based on 2D Tsallis entropy for image thresholding. Int J Comput Sci Eng (IJCSE) 2011;3(9):1325–36.
  • [34] Sahoo PK, Arora G. A thresholding method based on two-dimensional Renyi's entropy. Pattern Recognit Vol 2004;37 (6):1149–61.
  • [35] Portes de Albuquerque M, Esquef IA, Gesualdi Mello AR, Portes de Albuquerque M. Image thresholding using Tsallis entropy. Pattern Recognit Lett 2004;25(9):1059–65.
  • [36] Yan C, Sang N, Zhang T. Local entropy-based transition region extraction and thresholding. Pattern Recognit 2003;24(16):2935–41.
  • [37] Sahoo PK, Arora G. Image thresholding using two-dimensional Tsallis-Havrda-Charvát entropy. Pattern Recognit Lett 2006;27(6):520–8.
  • [38] Li X, Zhao Z, Cheng HD. Fuzzy entropy threshold approach to breast cancer detection. Inf Sci – Appl 1995;4(1):49–56.
  • [39] Cheng HD, Yen-Hung, Chen Ying Sun A. novel fuzzy entropy approach to image enhancement and thresholding. Signal Process 1999;75(3):277–301.
  • [40] Bloch I. Fuzzy spatial relationships for image processing and interpretation: a review. Image Vis Comput 2005;23(2):89–110.
  • [41] Tao WB, Tian JW, Liu J. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognit Lett 2003;24:3069–78.
  • [42] Linyi L, Deren L. Fuzzy entropy image segmentation based on particle swarm optimization. Prog Nat Sci 2008;18 (9):1167–71.
  • [43] Jinhui L, Yiliang Z. Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram. Optik 2013;124(18):3756–60.
  • [44] Yin S, Zhao X, Wang W, Gong M. Efficient multilevel image segmentation through fuzzy entropy maximization and graph cut optimization. Pattern Recognit 2014;47 (9):2894–907.
  • [45] Yu H-Y, Zhi X-B, Fan J-L. Image segmentation based on weak fuzzy partition entropy. Neurocomputing 2015;168:994–1010.
  • [46] Ye Z-W, Wang M-W, Liu W, Chen S-B. Fuzzy entropy based optimal thresholding using bat algorithm. Appl Soft Comput 2015;31:381–95.
  • [47] Yin S, Qian Y, Ming, Gongb L. Unsupervised hierarchical image segmentation through fuzzy entropy maximization. Pattern Recognit 2017;68:245–59.
  • [48] Xuan TP, Siarry P, Oulhad H. Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation. Appl Soft Comput 2018. Available online 31 January.
  • [49] Xiao Y, Cao Z, Cao Z, Yuan J. Entropic image thresholding based on GLGM histogram. Pattern Recognit Lett 2014;40:47–55.
  • [50] Sarkar S, Das S, Chaudhuri S Sinha. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognit Lett 2015;54:27–35.
  • [52] Zheng KF, Wang X. Feature selection method with joint maximal information entropy between features and class. Pattern Recognit 2018;77:20–9.
  • [53] Muthuvel M, Thangaraju f Balakumaran, Chinnasamy G. Microcalcification cluster detection using multiscale products based Hessian matrix via the Tsallis thresholding scheme. Pattern Recognit Lett 2017;94:127–33.
  • [54] Nguyen DC, Benameur S, Mignotte M, Lavoie F. Superpixel and multi-atlas based fusion entropic model for the segmentation of X-ray images. Med Image Anal 2018;58–74.
  • [55] Sumathi R, Venkatesulu M, Arjunan SP. Extracting tumor in MR brain and breast image with Kapur's entropy based Cuckoo Search Optimization and morphological reconstruction filters. Biocybern Biomed Eng 2018;38(4):918–30.
  • [56] Pollay M. Blood-Brain Barrier, Cerebral Edema.. In: Wilkins RH, Rengachary SS, editors. Neurosurgery. 2nd ed. New York: McGraw Hill Book Co.; 1996. p. 335–44.
  • [57] Haralick R, Shanmugan K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973;610–21.
  • [58] Essig M, Knopp MV, Schoenberg SO, Hawighorst H, Wenz F, Debus J, et al. Cerebral gliomas and metastases: assessment with contrast-enhanced fast fluid-attenuated inversion- recovery MR imaging. Radiology 1999;210(2):551–7.
  • [59] Gonzalez R, Woods R. Digital Image Processing. 2nd ed. Pearson Education; 2005.
  • [60] http://www.imm.dtu.dk/projects/BRATS2012.
  • [61] Menze. et al. The Multimodal Brain Tumor Image Segmentation enchmark (BRATS). IEEE Trans Med Imaging 2015;34(10):1993–2024.
  • [62] Kistler. et al. The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 2013;15(11).
  • [63] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13(4):600–12.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
PL
W opisie bibliogr. brak poz. nr 51
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-479f5712-75be-4671-ad86-3e6363235fb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.