Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 33 | 109--113
Tytuł artykułu

Utilize Deep learning to increase the performance of a Book recommender system using the Item-based Collaborative Filtering

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Item-based Collaborative Filtering is a common and efficient approach for recommendation problems. In this study, we have investigated the power of deep learning in textual feature extraction and applied this advantage to a high-performance item-based collaborative filtering recommender system. The proposed approach has been experienced on book datasets added by texts collected from famous book review sites. The experiment proves that the proposed model has better performance thanks to the contribution of the new item profile process method based on Deep Learning.
Wydawca

Rocznik
Tom
Strony
109--113
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Faculty of Information Technology FPT University -FPT Polytechnic Hanoi, Vietnam, dieulth2@fpt.edu.com
  • Faculty of Computer Science and Engineering Thuyloi University Hanoi, Vietnam, tmtuan@tlu.edu.vn
  • Faculty of Computer Science and Engineering Thuyloi University Hanoi, Vietnam, ngantt@tlu.edu.vn
  • Faculty of Computer Science and Engineering Thuyloi University Hanoi, Vietnam, lanlhbk@tlu.edu.vn
Bibliografia
  • [1] Comparison of user-based and item-based collaborative filtering. [Online; accessed 17-August-2019]. https://medium.com/@wwwbbb8510/comparison-of-user-based-and-item-based/-collaborative-filtering-f58a1c8a3f1d
  • [2] Sarwar B, Karypis G, Konstan J, Riedl J (2001) Itembased collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, ACM, pp2853295
  • [3] Yang Z, Wu B, Zheng K, Wang X, Lei L (2016) A survey of collaborative filtering-based recommender systems for mobile internet applications. IEEE Access 4:327333287
  • [4] Linden G, Jacobi J, Benson E (2001) Collaborative recommendations using item-to-item similarity mappings. [Google Patents]
  • [5] Deshpande M, Karypis G (2004) Item-based top-n recommendation algorithms. ACM Trans Inf Syst 22(1):1433177
  • [6] Ajaegbu, C. (2021). An optimized item-based collaborative filtering algorithm. Journal of ambient intelligence and humanized computing, 12(12), 10629-10636.
  • [7] Singh, P. K., Sinha, S., & Choudhury, P. (2022). An improved item-based collaborative filtering using a modified Bhattacharyya coefficient and user-user similarity as weight. Knowledge and Information Systems, 64(3), 665-701.
  • [8] Verma, M., & Rawal, A. (2022). An Enhanced Item-Based Collaborative Filtering Approach for Book Recommender System Design. ECS Transactions, 107(1), 15439.
  • [9] Almaghrabi, M., & Chetty, G. (2018, December). A deep learning based collaborative neural network framework for recommender system. In 2018 International Conference on Machine Learning and Data Engineering (iCMLDE) (pp. 121-127). IEEE.
  • [10] Batmaz, Z., Yurekli, A., Bilge, A., & Kaleli, C. (2019). A review on deep learning for recommender systems: challenges and remedies. Artificial Intelligence Review, 52(1), 1-37.
  • [11] Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 1-38.
  • [12] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295).
  • [13] Wu J, Chen L, Feng Y, Zheng Z, Zhou M, Wu Z (2013) Predicting quality of service for selection by neighborhoodbased collaborative filtering. IEEE Trans Systems, Man, and Cybernetics: Systems 43(2):4283439
  • [14] Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). Text summarization techniques: a brief survey. arXiv preprint arXiv:1707.02268.
  • [15] Sagha, H., Cummins, N., & Schuller, B. (2017). Stacked denoising autoencoders for sentiment analysis: a review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(5), e1212.
  • [16] Liang, J., & Kelly, K. (2021). Training stacked denoising autoencoders for representation learning. arXiv preprint arXiv:2102.08012.
  • [17] Tong, H., Liu, B., & Wang, S. (2018). Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning. Information and Software Technology, 96, 94-111.
  • [18] Patil, A., & Mahalle, P. (2021). A Building Topical 2-Gram Model: Discovering and Visualizing the Topics Using Frequent Pattern Mining. In Proceeding of First Doctoral Symposium on Natural Computing Research (pp. 11-21). Springer, Singapore.
  • [19] Elghannam, F. (2021). Text representation and classification based on bi-gram alphabet. Journal of King Saud University-Computer and Information Sciences, 33(2), 235-242.
  • [20] Mori, S., Nishimura, M., & Itoh, N. (1998). Word clustering for a word bi-gram model. In ICSLP.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47931b13-a86b-4471-a92b-822cf9101604
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.