Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | T. 14, nr 3 | 56--60
Tytuł artykułu

A method for forming a truncated positional code system for transformed video images

Treść / Zawartość
Warianty tytułu
PL
Metoda tworzenia systemu skróconego kodu pozycyjnego dla przekształconych obrazów wideo
Języki publikacji
EN
Abstrakty
EN
The article substantiates the requirements for the quality characteristics of video information services. It is shown that it is necessary to improve the quality of video information by the following indicators: time delays for video data delivery in terms of ensuring the required completeness; integrity of video information in accordance with the requirements of the application. The consequence of this fact is an imbalance between meeting the requirements for different groups of quality characteristics of video services. A set of measures is used to reduce the load on information and communication systems. One of the key ones is the use of compression technologies to reduce the bit volume. Therefore, the development of new coding technologies in terms of localising the balance between the level of video data compression and its integrity is an urgent scientific and applied problem. The article describes the main stages of creating a method for determining the informative and positional weight for a coding system in a truncated positional basis. For this purpose, a system of mathematical relations is developed to determine the number of admissible sequences. On the basis of experimental studies, it is shown that the developed method has advantages in terms of ensuring the level of video data integrity under conditions of a given compression rate.
PL
W artykule uzasadniono wymagania dotyczące cech jakościowych usług informacji wideo. Wykazano, że konieczna jest poprawa jakości informacji wideo pod względem następujących wskaźników: opóźnienia czasowe w dostarczaniu danych wideo pod względem zapewnienia wymaganej kompletności; integralność informacji wideo zgodnie z wymaganiami aplikacji. Konsekwencją tego faktu jest brak równowagi między spełnieniem wymagań dla różnych grup cech jakościowych usług wideo. Aby zmniejszyć obciążenie systemów teleinformatycznych, stosuje się szereg środków. Jednym z kluczowych jest wykorzystanie technologii kompresji w celu zmniejszenia objętości bitowej. Dlatego też rozwój nowych technologii kodowania w zakresie lokalizacji równowagi między poziomem kompresji danych wideo a ich integralnością jest pilnym zagadnieniem naukowym i praktycznym. W artykule opisano główne etapy tworzenia metody określania wagi informacyjnej i pozycyjnej dla systemu kodowania w skróconej bazie pozycyjnej. W tym celu opracowano system relacji matematycznych do określania liczby prawidłowych sekwencji. Na podstawie badań eksperymentalnych wykazano, że opracowana metoda ma zalety pod względem zapewnienia poziomu integralności danych wideo w warunkach określonego stopnia kompresji.
Wydawca

Rocznik
Strony
56--60
Opis fizyczny
Bibliogr. 28 poz.,fot.
Twórcy
autor
  • Heroes of Kruty Military Institute of Telecommunications and Informatization, Kyiv, Ukraine, ivan.pantas@viti.edu.ua
Bibliografia
  • [1] Auer S. et al.: Bitstream-based JPEG Encryption in Real-time. International Journal of Digital Crime and Forensics 5(3), 2013, 1–14 [https://doi.org/10.4018/jdcf.2013070101].
  • [2] Barannik D., Barannik V.: Steganographic Coding Technology for Hiding Information in Infocommunication Systems of Critical Infrastructure. IEEE 4th International Conference on Advanced Trends in Information Theory (ATIT), 2022, 88–91 [https://doi.org/10.1109/ATIT58178.2022.10024185].
  • [3] Barannik V. et al.: A method to control bit rate while compressing predicted frames. Proceedings of 13th International Conference: The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), 2015, 36–38 [https://doi.org/10.1109/CADSM.2015.7230789].
  • [4] Barannik V. et al.: Detections of sustainable areas for steganographic embedding. IEEE East-West Design & Test Symposium (EWDTS), 2017, 1–4.
  • [5] Barannik V. et al.: Method of indirect information hiding in the process of video compression. Radioelectronic and Computer Systems 4, 2021, 119–131 [https://doi.org/10.32620/reks.2021.4].
  • [6] Barannik V., Barannik N.: Indirect information hiding technology on a multiadic basis. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS 11(3), 2021, 14 – 17 [https://doi.org/10.35784/iapgos.2812].
  • [7] Bernardo M. V. et al.: JPEG XL Objective Evaluation Results, document JPEG (ISO/IEC JTC 1/SC 29/WG 1). 86th Meeting, M86070, Sydney 2020.
  • [8] Chunyi Li et al.: MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model. Journal of Latex Class Files 1(1), 2024, 1–13.
  • [9] Descampe A. et al.: JPEG XS – A New Standard for Visually Lossless Low-Latency Lightweight Image Coding. Proceedings of the IEEE, 109(9), 2021, 1559–1577 [https://doi.org/10.1109/jproc.2021.3080916].
  • [10] Duda J. et al.: The use of asymmetric numeral systems as an accurate replacement for Huffman coding. Picture Coding Symposium, 2015, 65–69.
  • [11] Duda J.: Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithmetic coding, 2014.
  • [12] Gary J. et al.: Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology, 2012.
  • [13] Hasler D., Suesstrunk S. E.: Measuring colorfulness in natural images. Proc. SPIE 5007, 2003, 87–95.
  • [14] Helin H. et al.: Optimized JPEG 2000 Compression for Efficient Storage of Histopathological Whole-Slide Images. Journal of pathology informatics 9, 2018 [https://doi.org/10.4103/jpi.jpi_69_17].
  • [15] How JPEG XL Compares to Other Image Codecs [https://cloudinary.com/blog/how_jpeg_xl_compares_to_other_image_codecs].
  • [16] Iwahashi M., Kiya H.: Non Separable Two Dimensional Discrete Wavelet Transform for Image Signals. Discrete Wavelet Transforms, 2013.
  • [17] JPEG XL: How It Started, How It’s Going [https://cloudinary.com/blog/jpeg-xl-how-it-started-how-its-going].
  • [18] Li F., Lukin V.: Providing a Desired Compression Ratio for Better Portable Graphics Encoder of Color Images: Design and Analysis, Digitalization and Management Innovation. Proceedings of DMI, 2022, 633–640.
  • [19] Mallat S.: A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. 3rd edition. Academic Press, Inc., USA 2008.
  • [20] Ming L. et al.: Transformer-based Image Compression. Data Compression Conference (DCC), 2022, 469 [https://doi.org/10.1109/DCC52660.2022.00080].
  • [21] Minner D. et. al.: Channel-wise Autoregressive Entropy Models for Learned Image Compression. IEEE International Conference on Image Processing (ICIP), 2020, 3339–3343 [https://doi.org/10.1109/icip40778.2020.9190935].
  • [22] Mishra D. et al.: Wavelet-based Deep Auto Encoder-Decoder (WDAED) based Image Compression. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 1452–1462 [https://doi.org/10.1109/TCSVT.2020.3010627].
  • [23] Pratt W.: Introduction to Digital Image Processing. CRC Press, 2013.
  • [24] Ramadan M. R., Suhair A. D.: Digital image compression by using intelligence swarm algorithms. International Journal of Mathematics and Computer Science, 17, 2022, 785–794.
  • [25] Scott E.: Umbaugh. Digital Image Processing and Analysis: Applications with MATLAB and CVIPtools. 4th Edition. CRC Press, 2017.
  • [26] Seow J. W. et al.: A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities. Neurocomputing 513(7), 2022, 351–371 [https://doi.org/10.1016/j.neucom.2022.09.135].
  • [27] Tang Y. et al.: JPEG-XR-GCP: Promoting JPEG-XR Compression by Gradient-Based Coefficient Prediction. 12th International Conference on Advanced Computational Intelligence – ICACI, 2020, 51–58 [https://doi.org/10.1109/ICACI49185.2020.9177623].
  • [28] Xu J. et al.: Directional Lapped Transforms for Image Coding. IEEE Transactions on Image Processing 19(1), 2010, 85–97.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4782eac1-68ad-4128-989b-6661a4408ef2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.