Warianty tytułu
Języki publikacji
Abstrakty
A laser ultrasonic method based on transmission has been investigated to characterize voids in the bonded layer and its corresponding quantitative strategy has been proposed to feed back accurate manufacturing information on multi-layer metal bonded structures. Characteristics of laser ultrasonic waves obtained at epicentre in a bonded joint were analyzed and interaction of laser ultrasound with voids in the bonded layer was explained with aids of simulation results and experimental data. The longitudinal wave amplitude gradually increases and then decreases with the increase of distances off epicentre, while the shear wave amplitude shows a monotonic decline with distances off epicentre rising. Moreover, the relative sensitivity has been proposed to quantitatively measure the sizes of voids and its variation is from −2.48 dB to −2.44 dB with defects of 3 mm to 15 mm in diameter. The laser ultrasonic C-scan result based on shear waves with transmission can find the small void with 3 mm size and other natural defects. The proposed quantitative method is effective for measurement of void sizes. As a result, laser ultrasonic C-scans on basis of transmitted shear waves jointed with the proposed quantitative method have great potential for quantitative characterization of voids in bonded structures.
Czasopismo
Rocznik
Tom
Strony
79--90
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
autor
- Beijing Jinghang Research Institute of Computing and Communication, Beijing 100074, China, zkuanshuang@buaa.edu.cn
autor
- Beijing Jinghang Research Institute of Computing and Communication, Beijing 100074, China
autor
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
Bibliografia
- [1] C.C.H. Guyott, P. Cawley, R.D. Adams, The non-destructive testing of adhesively bonded structure: a review, J. Adhes. 20 (2) (1986) 129–159.
- [2] C. Jeenjitkaew, F.J. Guild, The analysis of kissing bonds In adhesive joints, Int. J. Adhes. Adhes. 75 (2017) 101–107.
- [3] M. Korzeniowski, T. Piwowarczyk, R.G. Maev, Application of ultrasonic method for quality evaluation of adhesive layers, Arch. Civ. Mech. Eng. 14 (4) (2014) 661–670.
- [4] M. Dubois, T.E. Drake, Super high quality laser-ultrasound signals for aircraft component inspection, J. Phys. IV 125 (2005) 315–320.
- [5] C.B. Scruby, L.E. Drain, Laser Ultrasonics Techniques and Applications, CRC Press, 1990.
- [6] K. Heller, L.J. Jacobs, J. Qu, Characterization of adhesive bond properties using Lamb waves, NDT & E Int. 33 (8) (2000) 555–563.
- [7] D. Cerniglia, N. Montinaro, V. Nigrelli, Detection of disbonds in multi-layer structures by laser-based ultrasonic technique, J. Adhes. 84 (10) (2008) 811–829.
- [8] K. Bathe, Finite Element Method. Wiley Encyclopedia of Computer Science and Engineering, John Wiley & Sons, Inc., 2000, pp. 394–409.
- [9] H. Allik, T.J.R. Hughes, Finite element method for piezoelectric vibration, Int. J. Numer. Methods Eng. 2 (2) (2010) 151–157.
- [10] K. Zhang, Z. Zhou, J. Zhou, et al., Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation, Appl. Surf. Sci. 353 (2015) 284–290.
- [11] H.X. Sun, X.U. Bai-Qiang, X.U. Chen-Guang, et al., Numerical simulation of laser-generated ultrasound by spectral finite element method in transverse isotropic material, Acta Photon. Sinica 38 (5) (2009) 1041–1046.
- [12] P. Liu, A.W. Nazirah, H. Sohn, Numerical simulation of damage detection using laser-generated ultrasound, Ultrasonics 69 (248) (2016).
- [13] Z. Shen, B. Xu, X. Ni, et al., Numerical simulation of lasergenerated ultrasonic waves in layered plates, J. Phys. D: Appl. Phys. 37 (17) (2004) 2364–2370.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47703e65-d34f-4b48-9cca-aa48d1455119