Czasopismo
2015
|
Vol. 48, nr 1
|
21--30
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A duchain complex of W. Dwyer and D. Kan is a common extension of the notions of a chain complex and a cochain complex. Given a square commutative diagram of duchain complexes, the lifting-extension problem asks whether there exists a diagonal map making the two resulting triangles commute. Duchain complexes have a model category structure, and hence a lift exists if the left vertical map is a cofibration, the right vertical map is a fibration, and one of them is a weak equivalence. We show that it is possible to replace the two conditions above, by a countably infinite, bigraded, family of conditions which guarantee the existence of a lift.
Czasopismo
Rocznik
Tom
Strony
21--30
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Warsaw University of Technology, jan.spalinski@gmail.com
Bibliografia
- [1] H. Cartan, E. Eilenberg, Homological Algebra, Princeton University Press, 1956.
- [2] W. G. Dwyer, D. M. Kan, Normalizing the cyclic modules of Connes, Comment. Math. Helv. 60 (1985), 582–600.
- [3] W. G. Dwyer, D. M. Kan, Three homotopy theories for cyclic modules, J. Pure Appl. Algebra 44 (1987), 165–175.
- [4] W. G. Dwyer, J. Spaliński, Homotopy Theories and Model Categories, Handbook of Algebraic Topology, Elsevier, 1995.
- [5] J. W. Grossman, A homotopy theory of pro-spaces, Trans. Amer. Math. Soc. 201 (1975), 161–176.
- [6] S. T. Hu, Homotopy Theory, Academic Press, 1959.
- [7] D. Isaksen, A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc. 353(7) (2001), 2805–2841.
- [8] D. Quillen, Homotopical Algebra, Springer LNM 43, 1967.
- [9] J. Spaliński, Stratified model categories, Fund. Math. 178 (2003), 217–236.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47480864-25bf-49e3-97bd-94aad76a1380