Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, iss. 3 | 1177--1182
Tytuł artykułu

ZnO Nanowires Grown on Al2O32O4 Nanostructure Using Solid-Vapor Mechanism

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present Al2O3-ZnAl2O4-ZnO nanostructure, which could be a prominent candidate for optoelectronics, mechanical and sensing applications. While ZnO and ZnAl2O4 composites are mostly synthesized by sol-gel technique, we propose a solid-vapor growth mechanism. To produce Al2O3-ZnAl2O4-ZnO nanostructure, we conduct ZnO:C powder heating resulting in ZnO nanowires (NWs) growth on sapphire substrate and ZnAl2O4 spinel layer at the interface. The nanostructure was examined with Scanning Electron Microscopy (SEM) method. Focused Ion Beam (FIB) technique enabled us to prepare a lamella for Transmission Electron Microscopy (TEM) imaging. TEM examination revealed high crystallographic quality of both spinel and NW structure. Epitaxial relationships of Al2O3-ZnAl2O4 and ZnAl2O4-ZnO are given.
Słowa kluczowe
Wydawca

Rocznik
Strony
1177--1182
Opis fizyczny
Bibliogr. 19 poz., fot., rys.
Twórcy
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland, zajkowska@ifpan.edu.pl
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland
  • Institute of Physics Polish Academy of Sciences, 32/46 Lotników Av., 02-668 Warszawa, Poland
Bibliografia
  • [1] T. Sahoo, S.K. Tripathy, Y.T. Yu, H.K. Ahn, D.C. Shin, I.H. Lee, Morphology and crystal quality investigation of hydrothermally synthesized ZnO micro-rods, Mater. Res. Bull. 43, 2060-2068 (2008). DOI: https://doi.org/10.1016/j.materresbull.2007.09.011
  • [2] M. Willander, Q.X. Zhao, Q.H. Hu, P. Klason, V. Kuzmin, S.M. AlHilli, O. Nur, Y.E. Lozovik, Fundamentals and properties of zinc oxide nanostructures: Optical and sensing applications, Superlattices and Microstructures 43, 352-361 (2008). DOI: https://doi.org/10.1016/j.spmi.2007.12.021
  • [3] K. Matuła, Ł. Richter, W. Adamkiewicz, B. Åkerström, J. Paczesny, R. Hołyst, Influence of nanomechanical stress induced by ZnO nanoparticles of different shapes on the viability of cells, Soft Matter 12, 4162-4169 (2016). DOI: https://doi.org/10.1039/C6SM00336B
  • [4] R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, J. Ding, Synthesis, surface modification and photocatalytic property of ZnO nanoparticles, Powder Technol. 189, 426-432 (2009). DOI: https://doi.org/10.1016/j.powtec.2008.07.004
  • [5] J. Cui, Zinc oxide nanowires, Mater. Charact. 64, 43-52 (2012). DOI: https://doi.org/10.1016/j.matchar.2011.11.017
  • [6] L.Z. Kou, W.L. Guo, C. Li, Piezoelectricity of ZNO and its nanostructures, 2008 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, 354-359, China 2008. DOI: https://doi.org/10.1109/SPAWDA.2008.4775808
  • [7] X. Li, Z. Zhu, Q. Zhao, L. Wang, Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study, J. Hazard. Mater. 186, 2089-2096 (2011). DOI: https://doi.org/10.1016/j.jhazmat.2010.12.111
  • [8] L. Cornu, M. Gaudon, V. Jubera, ZnAl2O4 as a potential sensor: variation of luminescence with thermal history, J. Mater. Chem. C 1, 5419-5428. DOI: https://doi.org/10.1039/C3TC30964A
  • [9] E. Chikoidze, C. Sartel, I. Madaci, H. Mohamed, C. Vilar, B. Ballesteros, F. Belarre, E. del Corro, P. Vales-Castro, G. Sauthier, L. Li, M. Jennings, V. Sallet, Y. Dumnot, A. Perez-Tomas, P-Type Ultrawide-Band-Gap Spinel ZnGa2O4: New Perspectives for Energy Electronics, Cryst. Growth Des. 20, 2535-2546 (2020). DOI: https://doi.org/10.1021/acs.cgd.9b01669
  • [10] M. Hoppe, O. Lupan, V. Postica, N. Wolff, V. Duppel, L. Kienle, I. Tiginyanu, R. Adelung, ZnAl2O4-Functionalized Zinc Oxide Microstructures for Highly Selective Hydrogen Gas Sensing Applications, Phys. Status Solidi 215, 1700772 (2018). DOI: https://doi.org/10.1002/pssa.201700772
  • [11] M. Nasr, R. Viter, C. Eid, F. Warmont, R. Habchi, P. Miele, M. Bechelany, Synthesis of novel ZnO/ZnAl2O4 multi co-centric nanotubes and their long-term stability in photocatalytic application, RSC Adv. 6, 103692-103699 (2016). DOI: https://doi.org/10.1039/C6RA22623J
  • [12] B.E. Azar, A. Ramazani, S.T. Fardood, A. Morsali, Green synthesis and characterization of ZnAl2O4@ZnO nanocomposite and its environmental applications in rapid dye degradation, Optik 208, 164129 (2020). DOI: https://doi.org/10.1016/j.ijleo.2019.164129
  • [13] O. Lupan, V. Postica, J. Grottrup, A.K. Mishra, N.H. de Leeuw, J.F. Carreira, J. Rodrigues, N. Sedrine, M.R. Correia, T. Monteiro, V. Cretu, I. Tiginyanu, D. Smazna, Y.K. Mishra, R. Adelung, Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications, ACS Appl. Mater. Interfaces 9, 4084-4099 (2017). DOI: https://doi.org/10.1021/acsami.6b11337
  • [14] J.S. Na, Q. Peng, G. Scarel, G.N. Parsons, Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation during Atomic Layer Deposition of Al-Doped ZnO, Chem. Mater 21, 5585 (2009). DOI: https://doi.org/10.1021/cm901404p
  • [15] G. Jáger, J.J. Tomán, L. Juhász, G. Vecsei, Z. Erdélyi, C. Cserháti, Nucleation and growth kinetics of ZnAl2O4 spinel in crystalline ZnO - amorphous Al2O3 bilayers prepared by atomic layer deposition, Scr. Mater. 219, 114857 (2022). DOI: https://doi.org/10.1016/j.scriptamat.2022.114857
  • [16] C.R. Gorla, W.E. Mayo, S. Liang, Y. Lu, Structure and interface-controlled growth kinetics of ZnAl2O4 formed at the (11-20) ZnO/(01-12) Al2O3 interface, J. Appl. Phys. 87, 3736-3743 (2000). DOI: https://doi.org/10.1063/1.372454
  • [17] J. Zhou, J. Liu, X. Wang, J. Song, R. Tummala, N.S. Xu, Z.L. Wang, Vertically Aligned Zn2SiO4 Nanotube/ZnO Nanowire Heterojunction Arrays. Nano Micro Small 3, 622-626 (2007). DOI: https://doi.org/10.1002/smll.200600495
  • [18] Y.J. Li, M.Y. Lu, C.W. Wang, K.M. Li, L.J. Chen, ZnGa2O4 nanotubes with sharp cathodoluminescence peak, Appl. Phys. Lett. 88, 2-5 (2006). DOI: https://doi.org/10.1063/1.2191418
  • [19] H.J. Fan, A. Lotnyk, R. Scholz, Y. Yang, D.S. Kim, E. Pippel, S. Senz, D. Hesse, M. Zacharias, Surface reaction of ZnO nanowires with electron-beam generated alumina vapor, J. Phys. Chem. C, 112, 6770-6774 (2008). DOI: https://doi.org/10.1021/jp712135p
Uwagi
This work has been supported by the National Science Center Poland, through projects No: 2019/35/B/ST5/03434 and 2020/37/B/ST8/03446
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4717e745-740d-4f92-aa23-ecdde64e08e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.