Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 22, nr 3 | 135--141
Tytuł artykułu

Scratch behaviour of surface modified hollow glass microsphere filled PC/ABS composites

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, hollow glass microspheres (HGMs) were surface treated using a silane coupling agent to coat the surface with an amine functional group. Modified and unmodified HGM filled polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) (70/30 wt.%) composites were prepared using a twin-screw extruder and then injection moulding. By means of FTIR spectroscopy, it was found that the modified HGMs containing the amine group formed an aminolysis compound with the PC phase. Scratch studies were performed at low load to avoid fracturing the composites during the test so that deformation of the material only happened in order to understand the influence of HGMs and modified HGM on the scratch behaviour of the composites. The silane modified HGM filled PC70/ABS30 composites exhibited improvement in scratch behaviour as compared to the composites containing unmodified HGMs. The 5 wt.% HGM-NH2 filled PC70/ABS30 composites demonstrate good improvement in scratch resistance as they attained the the highest values of scratch force, coefficient of friction, and scratch hardness among all the compositions of composites.
Wydawca

Rocznik
Strony
135--141
Opis fizyczny
Bibliogr.24 poz., rys.
Twórcy
  • School of Mechanical Engineering, VIT-AP University, Amravati – 522237, Andhra Pradesh, India
  • School of Mechanical Engineering, VIT-AP University, Amravati – 522237, Andhra Pradesh, India, pankaj.tambe@vitap.ac.in
Bibliografia
  • [1] Bärwinkel S., Seidel A., Hobeika S., Hufen R., Mörl M., Altstädt V., Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners, Materials 2016, 9(8), 659, DOI: 10.3390/ma9080659.
  • [2] Orzan E., Janewithayapun R., Gutkin R., Lo Re G., Kallio K., Thermo-mechanical variability of post-industrial and post-consumer recyclate PC-ABS, Polymer Testing 2021, 99, 107216, DOI: 10.1016/j.polymertesting.2021.107216.
  • [3] Sushmita K., Madras G., Bose S., The journey of polycarbonate-based composites towards suppressing electromagnetic radiation, Functional Composite Materials 2021, 2(1), DOI: 10.1186/s42252-021-00025-1.
  • [4] Seo J.S., Jeon H.T., Han T.H., Rheological investigation of relaxation behavior of polycarbonate/acrylonitrile- butadiene-styrene blends, Polymers 2020, 12(9), 1916, DOI: 10.3390/polym12091916
  • [5] Nishino K., Shindo Y., Takayama T., Ito H., Improvement of impact strength and hydrolytic stability of PC/ABS blend using reactive polymer, Journal of Applied Polymer Science 2016, 134(9), DOI: 10.1002/app.44550.
  • [6] Jiang H., Browning R., Sue H.J., Understanding of scratch-induced damage mechanisms in polymers, Polymer 2009, 50(16), 4056-4065, DOI: 10.1016/j.polymer.2009.06.061.
  • [7] Gauthier C., Lafaye S., Schirrer R., Elastic recovery of a scratch in a polymeric surface: Experiments and analysis, Tribology International 2001, 34(7), 469-479, DOI: 10.1016/s0301-679x(01)00043-3.
  • [8] Bowden F.P., Tabor D., The Friction and Lubrication of Solids, Oxford University Press, 1951.
  • [9] Briscoe B.J., Pelillo E., Sinha S.K., Characterisation of the scratch deformation mechanisms for poly (methyl methacrylate) using surface optical reflectivity, Polymer International 1997, 43(4), 359-367, DOI: 10.1002/(sici) 1097-0126(199708)43:4<359::aid-pi772>3.0.co;2-c.
  • [10] Briscoe B.J., Evans P.D., Pellilo E., Sinha S.K., Scratching maps for polymers, Wear 1996, 200(1-2), 137-147, DOI: 10.1016/s0043-1648(96)07314-0.
  • [11] Khun N.W., Liu E., Thermal, mechanical and tribological properties of polycarbonate/acrylonitrile-butadiene-styrene blends, Journal of Polymer Engineering 2013, 33(6), 535-543, DOI: 10.1515/polyeng-2013-0039.
  • [12] Arribas A., Bermudez M.D., Brostow W., Carrion-Vilches F.J., Olea-Mejia O., Scratch resistance of a polycarbonate + organoclay nanohybrid, Express Polymer Letters 2009, 3(10), 621-629, DOI: 10.3144/expresspolymlett.2009.78.
  • [13] Boentoro W., Pflug A., Szyszka B., Scratch resistance analysis of coatings on glass and polycarbonate, Thin Solid Films 2009, 517(10), 3121-3125, DOI: 10.1016/j.tsf.2008.11.119.
  • [14] Wang Z.Z., Gu P., Zhang Z., Indentation and scratch behavior of nano sio2/polycarbonate composite coating at the micro/nano-scale, Wear 2010, 269(1-2), 21-25, DOI: 10.1016/j.wear.2010.03.003.
  • [15] Liu J., Jiang H., Cheng Q., Wang C., Investigation of nano-scale scratch and stick-slip behaviors of polycarbonate using atomic force microscopy, Tribology International 2018, 125, 59-65, DOI: 10.1016/j.triboint.2018.04.024.
  • [16] Fabbri P., Messori M., Toselli M., Veronesi P., Rocha J., Pilati F., Enhancing the scratch resistance of polycarbonate with poly(ethylene oxide)-silica hybrid coatings, Advances in Polymer Technology 2009, 27(2), 117-126, DOI: 10.1002/adv.20122.
  • [17] Bermúdez M.D., Brostow W., Carrión-Vilches F.J., Sanes J., Scratch resistance of polycarbonate containing ZnO nanoparticles: Effects of sliding direction, Journal of Nanoscience and Nanotechnology 2010, 10(10), 6683-6689, DOI: 10.1166/jnn.2010.2513
  • [18] Wee J.W., Park S.Y., Choi B.H., Observation and understanding of scratch behaviors of glass fiber reinforced polycarbonate plates with various packing pressures during the injection molding process, Tribology International 2015, 90, 491-501, DOI: 10.1016/j.triboint.2015.05.009.
  • [19] Jang K.S., Low-density polycarbonate composites with robust hollow glass microspheres by tailorable processing variables, Polymer Testing 2020, 84, 106408, DOI: 10.1016/j.polymertesting.2020.106408.
  • [20] Sai B.L., Tambe P., Surface modified hollow glass micro-sphere reinforced 70/30 (wt/wt) P.C/A.B.S blends: Influence on Rheological, mechanical, and thermo-mechanical properties, Composite Interfaces 2021, 1-25, DOI: 10.1080/09276440.2021.1986974.
  • [21] Friedrich K., Friction and Wear of Polymer Composites, Composite Materials Series, Vol. 1, Elsevier, 1986.
  • [22] Myshkin N.K., Kovalev A.V., Adhesion and Friction of Polymers, Polymer Tribology, Imperial Press, 2009.
  • [23] Vignali A., Iannace S., Falcone G., Utzeri R., Stagnaro P., Bertini F., Lightweight poly(ε-caprolactone) composites with surface modified hollow glass microspheres for use in rotational molding: Thermal, rheological and mechanical properties, Polymers 2019, 11(4), 624, DOI: 10.3390/polym11040624.
  • [24] Li R., Wang P., Zhang P., Fan G., Wang G., Ouyang X., Ma N., Wei H., Surface modification of hollow glass microsphere and its marine-adaptive composites with epoxy resin, Advanced Composites Letters 2020, 29, DOI: 10.1177/2633366x20974682.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-46cbc4b7-1064-4ad7-a280-d28a1b53b99d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.