Czasopismo
2016
|
Vol. 24, No. 2
|
75--81
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We propose and study a new technique for securing fibre data communication. The paper presents a method for optical encryption of information transmitted with a traditional fibre link. The encryption method uses a spatial light modulator which converts light pulses representing original data into pseudo-random patterns. A linear combination of light pulses with pseudo-random patterns provides a required encryption performance. The main element of the encryptor is the spatial light modulator which comprises a matrix of cells selectively transmitting or blocking the light beam depending on the pseudo-random configuration of cells. The encrypted information is transmitted through the optical fibre. The decryption process relies on a computational solving of linear program or greedy pursuit. We present a brief description of the method, theoretical analysis and results of numerical simulation. A physical model concept of the method is also presented.
Czasopismo
Rocznik
Tom
Strony
75--81
Opis fizyczny
Bibliogr. 31 poz., wykr.
Twórcy
autor
- Military University of Technology, Institute of Optoelectronics, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland, marcin.kowalski@wat.edu.pl
autor
- Military University of Technology, Institute of Optoelectronics, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- 1. J. Verschuren, R. Govaerts, and J. Vandewalle, “ISO-OSI security architecture” in Computer Security and Industrial Cryptography, edited by B. Preneel, R. Govaerts, J. Vandewalle, Springer Berlin Heidelberg, Vol. 741, pp. 179–192, Berlin, 1993.
- 2. P.R. Prucnal, Optical Code Division Multiple Access: Fundamentals and Applications, Taylor & Francis, New York, 2006.
- 3. J. Qiu, “Quantum communications leap out of the lab”, Nature 508, 441–442 (2014).
- 4. K. Harasawa, O. Hirota, K. Yamashita, M. Honda, K. Ohhata, S. Akutsu, T. Hosoi, and Y. Doi, “Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation”, J. Lightwave Technol. 29, 316–323 (2011).
- 5. K.M. Cuomo and A.V. Oppenheim, “Circuit implementation of synchronized chaos with applications to communications”, Phys. Rev. Lett. 71, 65-68 (1993).
- 6. Z. Kang, J. Sun, L. Ma, Y. Qi, and S. Jian, “Multimode synchronization of chaotic semiconductor ring laser and its potential in chaos communication”, IEEE J. Quantum Electron. 50, 148–157 (2014).
- 7. J.A. Salehi, “Emerging optical code division multiple access communications systems”, IEEE Network 3, 31–39 (1989).
- 8. N. Kostinski, K. Kravtsov, and P.R. Prucnal, “Demonstration of an all optical OCDMA encryption and decryption system with variable two code keying”, IEEE Photonics Technol. Lett. 20, 2045–2047 (2008).
- 9. M. Życzkowski and M. Kowalski, “A quantum key as the fiber optic security sensor”, Acta Physica Polonica A, 124, 606–609 (2013).
- 10. K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges”, IEEE Communications Magazine 45, 27 – 34 (2007).
- 11. O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications, Cambridge University Press, New York, 2004.
- 12. M. Kowalski and M. Życzkowski, „Sposób optycznego szyfrowania informacji i układ do optycznego szyfrowania informacji”, patent application no. PL414425 (2015). (IN POLISH)
- 13. H.L. Ong, “Origin and characteristics of the optical properties of general twisted nematic liquid-crystal displays”, Appl. Phys. 64, 614–628 (1988).
- 14. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence”, Appl. Phys. Lett. 57, 2767–2769 (1990).
- 15. E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”, IEEE T. on Information Theory 52, 489-509 (2006).
- 16. E. Candes and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions”, Foundations of Comput. Math. 6, 227-254 (2006).
- 17. D. Donoho, “Compressed sensing”, IEEE T. on Information Theory 52, 1289–1306 (2006).
- 18. E. Candes and T. Tao, “Near optimal signal recovery from random projections: Universal encoding strategies”, IEEE T. Information Theory 52, 5406 – 5425 (2006).
- 19. R. Lyons, Understanding Digital Signal Processing, Prentice Hall, Upper Saddle River, 2011.
- 20. M.B. Wakin, “An introduction to compressive sampling”, IEEE Signal Process. Mag. 25, 21–30 (2008).
- 21. E. Candes, “Compressive sampling”, Int. Congress of Mathematics 3, 1433–1452 (2006).
- 22. R. Baraniuk, “Compressive sensing”, IEEE Signal Process. Magazine 24, 118–121(2007).
- 23. J. Romberg, “Imaging via compressive sampling”, IEEE Signal Process. Magazine 25, 14–20 (2008).
- 24. Y. Qiu, W. Xue, and G. Yu, “A projected conjugate gradient method for compressive sensing”, Intelligent Science and Intelligent Data Engineering 7751, 398–406 (2013).
- 25. Y. Saad, Iterative Methods For Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, 2003.
- 26. M.A.T. Figueiredo, R.D. Nowak, and S.J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE J. Selected Topics in Signal Process. 1, 586–597 (2007).
- 27. E. Candes and J. Romberg, “Practical signal recovery from random projections”, Preprint: source E.J. Candes, J. Romberg, Practical Signal Recovery from Random Projections, Wavelet Applications in Signal and Image Processing XI, Proc. SPIE Conf., Vol. 5914 (2005).
- 28. A. Oka and L. Lampe, “A compressed sensing receiver for bursty communication with UWB Impulse Radio”, Ultra-Wideband, ICUWB 2009. IEEE International Conference, 279–284 (2009).
- 29. J. A. Tropp and A. C. Gilbert, “Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit”, IEEE Transactions on Information Theory 53, 4655–4666 (2007).
- 30. S. Kwon, J. Wang, and B. Shim, “Multipath Matching Pursuit”, IEEE T. Information Theory 60, 2986–3001 (2014).
- 31. R. Neff and A. Zakhor, “Very low bit-rate video coding based on matching pursuits”, IEEE T. Circuits and Systems for Video Technology 7, 158–171 (1997).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-46c2cb67-33cc-4e81-809f-552d781bc806