Warianty tytułu
Języki publikacji
Abstrakty
In recent years, the composite materials have been very desirable by researchers for many engineering applications such as aviation and biomedical because of the tremendous characteristics of magnesium matrix metal composite. This current investigation aims to develop the AZ91/SiCp composites with various weight fractions (0, 2.5, 5 and 10 wt%) of silicon carbide particles via the stir casting method. The effect of SiC particles content on microstructure, mechanical and wear behaviour was investigated. The optical microscope, scanning electron microscopy and EDX analyses were utilized to detect the distribution of hard particles as well as the interface between the alloy and particles. Based on the findings, the homogeneous distribution of particles, refinement of grains in addition to good bonding between AZ91 alloy and particles have been achieved in produced composites. Therefore, the mechanical characteristics and wear performance are improved in composites compared with the unreinforced alloy. Moreover, these results suggest that for applications demanding high mechanical properties and wear resistance the AZ91/SiCp will be effective composites.
Czasopismo
Rocznik
Tom
Strony
102--115
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
- College of Mechanics and Materials, Hohai University, West Focheng Road‑8, Jiangning District, Nanjing 211100, China, bassiouny.saleh@hhu.edu.cn
- Production Engineering Department, Alexandria University, Alexandria 21544, Egypt
autor
- College of Mechanics and Materials, Hohai University, West Focheng Road‑8, Jiangning District, Nanjing 211100, China, jinghua‑jiang@hhu.edu.cn
autor
- College of Mechanics and Materials, Hohai University, West Focheng Road‑8, Jiangning District, Nanjing 211100, China, reham.fathy@hhu.edu.cn
autor
- College of Mechanics and Materials, Hohai University, West Focheng Road‑8, Jiangning District, Nanjing 211100, China, xuqiong@hhu.edu.cn
autor
- College of Mechanics and Materials, Hohai University, West Focheng Road‑8, Jiangning District, Nanjing 211100, China, lisawangzf@163.com
autor
- College of Mechanics and Materials, Hohai University, West Focheng Road‑8, Jiangning District, Nanjing 211100, China, aibin‑ma@hhu.edu.cn
- Suqian Institute, Hohai University, Suqian 223800, China
Bibliografia
- [1] Saleh B, Jiang J, Xu Q, Fathi R, Ma A, Li Y, Wang L. Statistical analysis of dry sliding wear process parameters for AZ91 alloy processed by RD-ECAP using response surface methodology. Met Mater Int. 2020. https ://doi.org/10.1007/s1254 0-020-00624 -w.
- [2] Xu Q, Ma A, Li Y, Saleh B, Yuan Y, Jiang J. Enhancement of mechanical properties and rolling formability in AZ91 alloy by RD-ECAP processing. Materials (Basel). 2019;12:3503–15.
- [3] Wang L, Jiang J, Saleh B, et al. Controlling Corrosion Resistance of a Biodegradable Mg–Y–Zn Alloy with LPSO Phases via Multipass ECAP Process. Acta Metall. Sin. (Engl. Lett.) 2020. https ://doi.org/10.1007/s4019 5-020-01042 -y.
- [4] Xu Q, Ma A, Saleh B, Li Y, Yuan Y, Jiang J, Ni C. Enhancement of strength and ductility of SiCp/AZ91 composites by RDECAP processing. Mater Sci Eng A. 2020;771:138579. https ://doi.org/10.1016/j.msea.2019.13857 9.
- [5] Asgari A, Sedighi M, Krajnik P. Magnesium alloy-silicon carbide composite fabrication using chips waste. J Clean Prod. 2019;232:1187–94. https ://doi.org/10.1016/j.jclep ro.2019.06.018.
- [6] Raja MA, Manikandan V, Amuthakkannan P, Rajesh S. Wear resistance of basalt particulate-reinforced stir-cast Al7075 metal matrix composites. J Aust Ceram Soc. 2017. https ://doi.org/10.1007/s4177 9-017-0133-8.
- [7] Xiao P, Gao Y, Xu F, Yang C, Li Y, Liu Z, Zheng Q. Tribological behavior of in situ nanosized TiB2 particles reinforced AZ91 matrix composite. Tribiol Int. 2018;128:130–9. https ://doi.org/10.1016/j.tribo int.2018.07.003.
- [8] El-Galy IM, Ahmed MH, Bassiouny BI. Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting. Alex Eng J. 2017;56:371–81. https ://doi.org/10.1016/j.aej.2017.03.009.
- [9] Kim C, Cho K, Manjili MH, Nezafati M. Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci. 2017.https ://doi.org/10.1007/s1085 3-017-1378-x.
- [10] Saleh B, Jiang J, Ma A, Song D, Yang D. Effect of main parameters on the mechanical and wear behaviour of functionally graded materials by centrifugal casting: a review. Met Mater Int. 2019;25:1395–409. https ://doi.org/10.1007/s1254 0-019-00273 -8.
- [11] Saleh B, Jiang J, Ma A, Song D, Yang D, Xu Q. Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met Mater Int. 2019. https ://doi.org/10.1007/s1254 0-019-00491 -0.
- [12] Ling Y, Hua H, Yuhong Z, Xiaomin Y. Microstructure and mechanical properties of squeeze casting quasicrystal reinforced AZ91D magnesium matrix composites. Rare Met Mater Eng. 2016;45:1978–82. https ://doi.org/10.1016/S1875 -5372(16)30157-6.
- [13] Kalkanlı A, Yılmaz S. Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Mater Des. 2008;29:775–80. https ://doi.org/10.1016/j.matde s.2007.01.007.
- [14] El-galy IM, Saleh BI, Ahmed MH. Functionally graded materials classifications and development trends from industrial point of view. SN Appl Sci. 2019;1:1–23. https ://doi.org/10.1007/s42452-019-1413-4.
- [15] Hashim J, Looney L, Hashmi MSJ. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;93:1–7.
- [16] Fathi R, Ma A, Saleh B, Xu Q, Jiang J. Investigation on mechanical properties and wear performance of functionally graded AZ91-SiCp composites via centrifugal casting. j.mtcomm. 2020. https ://doi.org/10.1016/j.mtcom m.2020.10116 9.
- [17] Yigezu BS, Jha PK, Mahapatra MM. The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting process: a review. Mater Manuf Process. 2013;28:969–79. https ://doi.org/10.1080/10426 914.2012.67790 9.
- [18] Prasanth S, Kaliamma K, Kumar A, Rajan TPD, Pillai UTS, Pai BC. Microstructure and properties of stir cast AZ91 Mg alloy-SiCp composites. Mater Sci Forum. 2012;710:365–70. https ://doi.org/10.4028/www.scien tific .net/MSF.710.365.
- [19] Huang S, Chen Z. Grain refinement of AlNp/AZ91D magnesium metal-matrix composites. Kov Mater. 2011;49:259–64.
- [20] Rahman MH, Rashed HM. Al: characterization of silicon carbide reinforced aluminum matrix composites. Procedia Eng. 2014;90:103–9. https ://doi.org/10.1016/j.proen g.2014.11.821.
- [21] Saleh BI, Ahmed MH. Development of functionally graded tubes based on pure Al/Al2O3 metal matrix composites manufactured by centrifugal casting for automotive applications. Met Mater Int. 2019. https ://doi.org/10.1007/s1254 0-019-00391 -3.
- [22] Prasad VJ, Rao NM, Kamaluddin S. A study of microstructure and tribological properties of stir cast Al metal matrix composite. Mater Today Proc. 2017;4:9264–71. https ://doi.org/10.1016/j.matpr .2017.07.286.
- [23] Zhu H, Jar C, Song J, Zhao J, Li J, Xie Z. High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr + a-Al2O3)/Al. Tribiol Int. 2012;48:78–86. https: //doi.org/10.1016/j.tribo int.2011.11.011.
- [24] Poddar P, Srivastava VC, Sahoo KL. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater Sci Eng A. 2007;461:357–64. https://doi.org/10.1016/j.msea.2007.01.052.
- [25] Babu NV, Moorthy T. V: Synthesis and characterization of Al7075/SiC composite by Stir casting. Appl Mech Mater. 2014;594:760–4. https ://doi.org/10.4028/www.scien tific .net/AMM.592-594.760.
- [26] Kumar KKA, Viswanath A, Rajan TPD, Pillai UTS, Pai BC. Physical, mechanical, and tribological attributes of stir-cast AZ91/SiCp composite. Acta Metall Sin (English Lett). 2014;27:295–305. https ://doi.org/10.1007/s4019 5-014-0045-3.
- [27] Bhushan RK, Kumar S. Influence of SiC particles distribution and their weight percentage on 7075 Al alloy. J Mater Eng Perform. 2011;20:317–23. https ://doi.org/10.1007/s1166 5-010-9681-6.
- [28] Aravindan S, Rao PV, Ponappa K. Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J Magnes Alloy. 2015;3:52–62. https ://doi.org/10.1016/j.jma.2014.12.008.
- [29] Baradeswaran A, Perumal AE. Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites.Compos Part B. 2013;54:146–52. https ://doi.org/10.1016/j.composites b.2013.05.012.
- [30] Bhushan RK, Kumar S, Das S. Fabrication and characterization of 7075 Al alloy reinforced with SiC particulates. Int J Adv Manuf Technol. 2015;65:611–24. https ://doi.org/10.1007/s00170-012-4200-6.
- [31] Viswanath A, Dieringa H, Kumar KKA, Pillai UTS, Pai BC. Investigation on mechanical properties and creep behavior of stir cast AZ91-SiCp composites. J Magnes Alloy. 2015;3:16–22. https ://doi.org/10.1016/j.jma.2015.01.001.
- [32] Mohammadi H, Emamy M, Hamnabard Z. The statistical analysis of tensile and compression properties of the as-cast AZ91-X % B4C composites. Int J Met. 2019. https ://doi.org/10.1007/s40962-019-00377 -2.
- [33] Kumar GBV, Rao CS, Selvaraj N. Mechanical and dry sliding wear behavior of Al7075 alloy-reinforced with SiC particles. J Compos Mater. 2012;46:1–9. https ://doi.org/10.1177/00219 9831141494 8.
- [34] Huang S, Abbas A. Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. J Alloys Compd. 2020;817:153321. https ://doi.org/10.1016/j.jallc om.2019.15332 1.
- [35] Yu W, Wang X, Zhao H, Ding C, Huang Z, Zhai H, Guo Z, Xiong S. Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J Alloys Compd. 2017;702:199–208. https ://doi.org/10.1016/j.jallc om.2017.01.231.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-46b3b496-d44f-4160-b055-b8c6bacdb092