Warianty tytułu
Języki publikacji
Abstrakty
The paper presents methods for laterolog response modeling. In Coulomb’s charges method, Laplace’s equation is solved for the electric field distribution in rock medium with internal boundaries between different resistivity layers. There, the boundary problem is reduced to Fredholm integral equation of the second kind. The second method uses a finite element array to model apparent resistivity from laterolog. The task is treated as DC problem and the Laplace equation is solved numerically. The presented methods were applied to borehole data covering a typical stratigraphic section of the Fore-Sudetic Monocline in southwestern Poland. Apparent resistivity was calculated using the Coulomb’s charges method and alternatively modeled using a finite element method which gave similar results. Then, a series of linear corrections for borehole, shoulder bed, and filtration effects for apparent resistivity obtained by the Coulomb’s charges method demonstrated the feasibility of calculating true resistivity of virgin and invaded zones. The proposed methods provide a flexible solution in modeling which can be adapted to other logs.
Czasopismo
Rocznik
Tom
Strony
417--442
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Kraków, Poland, jarzyna@agh.edu.pl
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Kraków, Poland, cichy@agh.edu.pl
autor
- Eötvös Loránd University, Department of Geophysics and Space Sciences, Budapest, Hungary, drahos@pangea.elte.hu
autor
- Eötvös Loránd University, Department of Geophysics and Space Sciences, Budapest, Hungary, gali@pangea.elte.hu
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Kraków, Poland, bala@geol.agh.edu.pl
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Kraków, Poland, ossowski@geol.agh.edu.pl
Bibliografia
- Alpin, L.M. (1964), Some theoretical method for solving direct resistivity logging problem, Izv. AN SSSR, Geof., 2.
- Alpin, L.M., D.S. Dajev, and A.D. Karinskij (1985), The Theory of Alternating Fields for Exploratory Geophysics, Niedra, Moskva.
- Anderson, B.I. (2001), Modeling and inversion methods for the interpretation of resistivity logging tool response, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
- Chew, W.C., Z. Nie, Q.-H. Liu, and B. Anderson (1991), An efficient solution for the response of electrical well logging tools in a complex environment, IEEE Trans. Geosci. Remote Sens. 29, 2, 308-313, DOI: 10.1109/36.73673.
- Cichy, A., and A. Ossowski (2015), Modeling electrical field distribution in layered geological rock formations with a borehole using the Coulomb charges method, Acta Geophys. 63, 5, 1244-1255, DOI: 10.2478/s11600-014-0253-2.
- Davydycheva, S., V. Druskin, and T. Habashy (1996), Solution of Maxwell’s equation in an arbitrary 3-D inhomogeneous anisotropic media with sharp discontinuities using a finite-difference scheme on a regular Cartesian grid with material averaging, Tech. Report EMG-002-96-15, Schlumberger– Doll Research Center, Cambridge, USA.
- Drahos, D. (1984), Electrical modeling of the inhomogeneous invaded zone, Geophysics 49, 10, 1580-1585, DOI: 10.1190/1.1441566.
- Drahos, D., and A. Galsa (2007), Finite element modeling of penetration electric sonde, Magy. Geofiz. 48, 1, 22-30 (in Hungarian).
- Ellis, D.V., and J.M. Singer (2007), Well Logging for Earth Scientists, 2nd ed., Springer, Dordrecht.
- Halliburton (1992), Technical manual of dual laterolog DLT-GA device, Halliburton Co., Houston, USA, http://www.halliburton.com.
- Lovell, J.R. (1993), Finite element methods in resistivity logging, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
- Moran, J., and J. Timmons (1957), The mathematical theory of ring electrode laterolog response in thick-beds, Project RR-602, Schlumberger–Doll Research Center, Cambridge, USA.
- Moskow, S.,V. Druskin, T. Habashy, P. Lee, and S. Davydycheva (1999), A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces, SIAM J. Numer. Anal. 36, 2, 442-464, DOI: 10.1137/S0036142997318541.
- Nam, M.J., D. Pardo, and C. Torres-Verdín (2010), Assessment of Delaware and Groningen effects on dual-laterolog measurements with a self-adaptive hp finite-element method, Geophysics 75, 6, F143-F149, DOI: 10.1190/ 1.3496670.
- Pardo, D., C. Torres-Verdin, and L. Demkowicz (2005), Self-adaptive goal-oriented hp-finite element simulations of induction and laterolog measurements in the presence of steel casing. In: Proc. Fifth Annual Meeting “Joint Industry Research Consortium on Formation Evaluation”, 1 August 2005, The University of Texas, Austin, USA.
- Ribeiro, M., and A. Carrasquilla (2013), New approach to calculate the mud invasion in reservoirs using well logs. In: Proc. 13th Int. Congr. Brazilian Geophysical Society and EXPOGEF, 26-29 August 2013, Rio de Janeiro, Brazil.
- Shaogui, D., L. Zhuqiang, and L. Zhiqiang (2009), Response of dual laterolog and fast correction for layer thickness and shoulder bed in horizontal wells, Petrol. Explor. Develop. 36, 6, 725-729, DOI: 10.1016/S1876-3804(10)60005-5.
- Trouiller, J.C., and I. Dubourg (1994), A better deep laterolog compensated for Groningen and reference effects. In: SPWLA 35th Annual Logging Symposium, 19-22 June 1994, Tulsa, USA, SPWLA-1994-VV.
- Wang, H.M., L.C. Shen, and G.J., Zhang (1998), Dual laterolog response in 3-D environments. In: SPWLA 39th Annual Logging Symposium, 26-28 May 1998, Keystone, USA, SPWLA-1998-X.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę
działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-468f3cc5-eccc-4304-b74c-dedc581860c8