Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 1 | 55--59
Tytuł artykułu

Machining of TiAl6V4 using lubricants containing renewable microalgae-born performance additives

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium and its alloys represent a special class of materials. A density of 4.81 g/cm³, a tensile strength of over 1,200 MPa, a fatigue strength greater than that of steel, a low modulus of elasticity and its self-passivating, inert surface make titanium an ideal material for lightweight structures in aerospace, marine applications, the chemical industry and medical implants. Although titanium is inert in its oxidised state, its nascent surface created in machining reacts with almost everything in its environment, including the tool. Moreover, its poor thermal conductivity results in high thermal stress on the tools. Overall, these properties lead to high wear rates and result in the requirement for finding a particularised solution for processes such as milling that involve the need to overcome such challenges. Such processes therefore require lubricants with well-selected performance additives. However, most of these performance additives are based on mineral oil and thus come from a non-renewable resource. In the presented work, environmental-friendly alternatives to conventional mineral oil-based performance additives were investigated. Due to the working mechanisms of performance additives in machining, this work focusses on sulphur- and phosphorus-containing polysaccharides and proteins from microalgae. It has been successfully shown that lubricants using extracts from microalgae as performance additives can be used for high-speed milling (HSC) of TiAl6V4. The investigated extracts were able to reach the performance level of conventional additives in terms of tool lifetime and wear. The results obtained show that appropriate alternatives to mineral oil-based additives exist from renewable raw-material sources.
Słowa kluczowe
Wydawca

Rocznik
Strony
55--59
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Industrie Beratung, Isarstraße 95, Bremen, 28199, Germany
  • Hochschule Bremen, Fakultät 5 Natur und Technik, Neustadtswall 30, 28199 Bremen, Germany
autor
  • Hochschule Bremen, Fakultät 5 Natur und Technik, Neustadtswall 30, 28199 Bremen, Germany
Bibliografia
  • 1. Byers JP. Metalworking Fluids. Third Edition, Boca Raton, Taylor & Francis, CRC Press. 2017.
  • 2. Czichos H, Habig KH. Tribologie-Handbuch, Springer Vieweg, Wies-baden. 4. Edition. 2015.
  • 3. Minami I. Molecular Science of Lubricant Additives. Applied Scienc-es, 2017, 7(5): 445. https://doi.org/10.3390/app7050445
  • 4. Koch T, Gläbe R, Wenzel D, Siol A. Köser J. Thoeming J. Mesing S. Larek R. Gavalás-Olea A. Lang I. Nachhaltige Schmierstoff-Additive auf Basis von Mikroalgen in der Umformung und Zerspanung. Teil 1. Tribologie und Schmierungstechnik. 2022; 69(3): 18-26. DOI:10.24053/TuS-2022-0014
  • 5. Koch T, Gläbe R, Wenzel D, Mesing S, Wilke K, Larek R. Nachhalti-ge Schmierstoff-Additive auf Basis von Mikroalgen in der Umformung und Zerspanung. Teil 2. Tribologie und Schmierungstechnik. 2022; 69(3): 18-26. DOI:10.24053/TuS-2022-0015
  • 6. Meier L. Developing Metalworking Fluids for Titanium Cutting. ETH Zürich, PhD-Thesis. 2020. https://doi.org/10.3929/ethz-b-000413413
  • 7. Schaal N, Kustera F, Wegenera K. Springback in metal cutting with high cutting speeds. Procedia CIRP. 2015, 31: 24-28. https://doi.org/10.1016/j.procir.2015.03.065
  • 8. Thieme Römpp Lexikon: Titan - RÖMPP, Thieme Gruppe (cited 2022 Apr 08).
  • 9. www.algaebase.org. (cited 2022 Apr 08).
  • 10. D’Alessandro EB, Nelson RAF. Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Ener-gy Reviews. 2016; 58: 832-841. https://doi.org/10.1016/j.rser.2015.12.162
  • 11. Roux JM, Lamotte H, Achard JL. An Overview of Microalgae Lipid Extraction in a Biorefinery Framework. Energy Procedia. 2017; 112: 680-688. https://doi.org/10.1016/j.egypro.2017.03.1137
  • 12. Murmu M, Sengupta S, Pal R, Mandal S, Murmu N.C. Banerjee P. Efficient tribological properties of azomethine functionalized chitosan as a bio-lubricant additive in paraffin oil: experimental and theoretical analysis. RSC Advances. 2020; 10(55): 33401-33416. DOI:10.1039/D0RA07011D
  • 13. Reihmann M, Köhler B, Rittereiser N, Yüce C. New Properties of Metalworking Fluids by Introducing Hydrophilic Protein Protection Layers. OilDoc Conference & Exhibition Nov. 17th-19th 2021.
  • 14. Krishnaraj V, Samsudeensadham S, Sindhumathi R, Kuppan PA. Study on high speed end milling of titanium alloy. Procedia Engineer-ing. 2014, 97: 251-257.
  • 15. Ma J, Mohammadi J, Zhou Y, Larsh J, Januszkiewicz K, Ewans R, Zhao Y, Gali OA, Riahi RA. An investigation into cutting fluid addi-tives performance during machining processing of Ti-Al6-V4. Int J Adv Manuf Technol. 2021; 112: 977–987. doi.org/10.1007/s00170-020-06403-6
  • 16. Benedicto E, Rubio EM, Carou D, Santacruz C. The Role of Surfac-tant Structure on the Development of a Sustainable and Effective Cutting Fluid for Machining Titanium Alloys. Metals. 2020; 10(10): 1388. https://doi.org/10.3390/met10101388
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-463d53f2-35b8-4dc6-b08a-219d91fa7656
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.