Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 8 | 260--270
Tytuł artykułu

Transforming Bubble Wrap and Packaging Plastic Waste into Valuable Fuel Resources

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to investigate the potential of plastic waste, specifically bubble wrap and packaging plastic, as a fuel source through pyrolysis process. The samples were analyzed using FTIR and GC-MS. The results showed that both samples contained alkanes and alkenes, with hydrocarbon fractions like those found in gasoline, kerosene, and diesel fuel. The pyrolysis process resulted in hydrocarbon fractions ranging from light to heavy fractions. The bubble wrap sample showed the highest percentage of hydrocarbon fraction in the kerosene range (C10–C13), with an area of 19.23%. In contrast, the packaging plastic sample showed the highest percentage of hydrocarbon fraction in the diesel range (C14–C20), with an area percentage of 19.67%. The calorific value of the pyrolysis products was also determined, with the bubble wrap sample having a higher value than that of gasoline, while the packaging plastic sample had a value close to that of kerosene. The results of this study suggest that plastic waste has the potential to be converted into fuel, which can contribute to sustainable development by reducing dependence on fossil fuels and reducing plastic waste. However, further refinement of the pyrolysis products is needed to meet commercial fuel standards.
Słowa kluczowe
Wydawca

Rocznik
Strony
260--270
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Architecture and Civil Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jakarta, 12220, Indonesia
  • Civil Engineering Study Program, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta, 57126, Indonesia
  • Department of Civil Engineering, Faculty of Engineering, Universitas Negeri Medan, Medan, North Sumatra, Indonesia
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jakarta, 12220, Indonesia
  • Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung 40116, Indonesia
Bibliografia
  • 1. Abidah H.N., Ismah H.A., Irmayanti S., Nurika G., Wikurendra E.A. 2021. The effectivity of solid medical waste management in pandemic era. journal of public health for tropical and coastal region, 4(3), 98–107.
  • 2. Al-Salem S.M., Van H.M., Karam H.J., Hakeem A., Meuldermans W., Patel J., Hafeez S., Manos G., Constantinou A. 2022. Fuel range properties of oil and wax obtained from catalytic pyrolysis of linear low-density polyethylene in a fluidized bed reactor FBR. Industrial Engineering Chemistry Research, 61(43), 16383–16392.
  • 3. Alakowe B.A. 2013. Effect of heat treatment on the characteristics and oil yield of moringa oleifera seeds. The International Journal of Engineering And Science (IJES), 2(1), 232–239.
  • 4. Amoloye T.O., Abdulkareem S.A., Eleburuike N.A. 2013. Thermal cracking of low density polyethylene ldpe waste into useful hydrocarbon products. ChemSearch Journal, 42, 72–75.
  • 5. Arora T., Chirla S.R., Singla N., Gupta L. 2022. Product packaging by e-commerce platforms: impact of covid-19 and proposal for circular model to reduce the demand of virgin packaging. Circular Economy and Sustainability, 2022, 1–19.
  • 6. Beck M.J., Hensher D.A. 2020. Insights into the impact of COVID-19 on household travel and activities in Australia – The early days under restrictions. Transport Policy, 96, 76–93.
  • 7. Bow Y., Rusdianasari R., Sutini P.L. 2019. Pyrolysis of polypropylene plastic waste into liquid fuel. IOP Conference Series: Earth and Environmental Science, 3471, 12128.
  • 8. Budiarto A.W., Surjosatyo A. 2021. Indonesia’s road to fulfill national renewable energy plan target in 2025 and 2050: current progress, challenges, and management recommendations – a small review. IOP Conference Series: Earth and Environmental Science, 9401, 12032.
  • 9. Cudjoe D., Wang H. 2022. Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Processing Technology, 237, 107470.
  • 10. Davidson M.G., Furlong R.A., McManus M.C. 2021. Developments in the life cycle assessment of chemical recycling of plastic waste – A review. Journal of Cleaner Production, 293, 126163.
  • 11. Fatimah Y.A., Govindan K., Murniningsih R., Setiawan A. 2020. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. Journal of Cleaner Production, 269, 122263.
  • 12. Hasyimi V., Azizalrahman H. 2021. Economy-led sustainable touristic city: the case of Surakarta, Indonesia. Journal of Tourism Futures, ahead-of-pahead-of-print. https://doi.org/10.1108/JTF-06-2020-0088
  • 13. Jaafar Y., Abdelouahed L., Hage R.E., Samrani A.E., Taouk B. 2022. Pyrolysis of common plastics and their mixtures to produce valuable petroleum-like products. Polymer Degradation and Stability, 195, 109770.
  • 14. Kunwar B., Cheng H.N., Chandrashekaran S.R., Sharma B.K. 2016. Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421–428.
  • 15. Peng Y., Wang Y., Ke L., Dai L., Wu Q., Cobb K., Zeng Y., Zou R., Liu Y., Ruan R. 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 254, 115243.
  • 16. Rachmawati Q., Herumurti W. 2015. Pengolahan sampah secara pitolisis dengan variasi rasio komposisi sampah dan jenis plastik. Jurnal Teknik ITS, 41, 27–29.
  • 17. Raharjo J., Rahmat B., Hasudungan J., Adam K.B. 2022. Breakthrough in achieving energy mix target in indonesia. 2022 5th International Conference on Energy Conservation and Efficiency ICECE, 1–5.
  • 18. Sari M.M., Inoue T., Septiariva I.Y., Kato S., Harryes R., Yokota K., Notodarmojo S., Suhardono S., Ramadan B.S. 2022. Identification of face mask waste generation and processing in tourist areas with thermo-chemical process. Archives of Environmental Protection, 482.
  • 19. Shalaby N., Hanafi S.A., Elmelawy M.S., El-Syed H.A. 2015. Hydrocracking of waste cooking oil as renewable fuel on niw/sio2-al2o3 catalyst. journal of advanced catalysis science and technology, 21, 27–37. https://doi.org/10.15379/2408-9834.2015.02.01.3
  • 20. Sharma H.B., Vanapalli K.R., Cheela V.R.S., Ranjan V.P., Jaglan A.K., Dubey B., Goel S., Bhattacharya J. 2020. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105052
  • 21. Sogancioglu M., Yel E., Ahmetli G. 2017. Pyrolysis of waste high density polyethylene HDPE and low density polyethylene LDPE plastics and production of epoxy composites with their pyrolysis chars. Journal of Cleaner Production, 165, 369–381.
  • 22. Suryawan I., Septiariva I.Y., Fauziah E.N., Ramadan B.S., Qonitan F.D., Zahra N.L., Sarwono A., Sari M.M., Ummatin K.K., Wei L.J. 2022. Municipal solid waste to energy : palletization of paper and garden waste into refuse derived fuel. Journal of Ecological Engineering, 234, 64–74.
  • 23. Suryawan I.W.K., Septiariva I.Y., Sari M.M., Ramadan B.S., Suhardono S., Sianipar I.M.J., Tehupeiory A., Prayogo W., Lim J.-W. 2023. Acceptance of waste to energy wte technology by local residents of jakarta city, indonesia to achieve sustainable clean and environmentally friendly energy. Journal of Sustainable Development of Energy, Water and Environment Systems, 112, 1004.
  • 24. Vanapalli K.R., Sharma H.B., Ranjan V.P., Samal B., Bhattacharya J., Dubey B.K., Goel S. 2021. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Science of The Total Environment, 750, 141514.
  • 25. Wright M.M., Daugaard D.E., Satrio J.A. Brown R.C. 2010. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 89, S2–S10.
  • 26. Yan G., Jing X., Wen H., Xiang S. 2015. Thermal Cracking of Virgin and Waste Plastics of PP and LDPE in a Semibatch Reactor under Atmospheric Pressure. Energy Fuels, 294, 2289–2298.
  • 27. Zahra N.L., Septiariva, I.Y., Sarwono A., Qonitan F.D., Sari M.M., Gaina P.C., Ummatin K.K., Arifianti Q.A.M.O., Faria N., Lim J.-W., Suhardono, S., Suryawan, I.W.K. 2022. Substitution garden and polyethylene terephthalate pet plastic waste as refused derived fuel. International Journal of Renewable Energy Development, 112(2), 523–532.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4637587c-5e4a-4dca-813c-015005b81b11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.