Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 29, Fasc. 2 | 353--367
Tytuł artykułu

On excess entropies for stationary random fields

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the behaviour of the excess entropies of stationary random fields defined by Crutchfield and Feldman in two classes of random fields: Conze fields and product fields.
Słowa kluczowe
Wydawca

Rocznik
Strony
353--367
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland, bulatek@mat.uni.torun.pl
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland, bkam@mat.uni.torun.pl
Bibliografia
  • [1] J. P. Conze, Entropie d’un groupe abelien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), pp. 11-30.
  • [2] J. P. Crutchfield, Symbolic dynamics of noisy chaos, Physica D 7 (1983), pp. 201-223.
  • [3] J. P. Crutchfield and D. P. Feldman, Regularities unseen, randomness observed: Levels of entropy convergence, Chaos 13 (2003), pp. 25-54.
  • [4] J. P. Crutchfield and D. P. Feldman, Structural information in two-dimensional patterns: Entropy convergence and excess entropy, Phys. Rev. E 67 (2003), 051104, pp. 1-9.
  • [5] J. P. Crutchfield and N. H. Packard, Noise scaling of symbolic dynamics entropies, in: Evolution of Order and Chaos, H. Haken (Ed.), Springer, Berlin 1982, pp. 215-227.
  • [6] J. P. Crutchfield and N. H. Packard, Symbolic dynamics of one-dimensional maps: Entropies, finite precision and noise, Internat. J. Theoret. Phys. 21 (1982), pp. 433-466.
  • [7] Ł. Dębowski, Properties of the excess entropy for stochastic processes over several alphabets (in Polish), Ph.D. Thesis, Warszawa 2005.
  • [8] I. Filipowicz, Product Zd-actions on the Lebesgue space and their applications, Studia Math. 122 (1977), pp. 289-298.
  • [9] P. Grassberger, Toward a quantitative theory of self-generated complexity, Internat. J. Theoret. Phys. 25 (9) (1986), pp. 907-938.
  • [10] J. C. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, Studies in Probability and Ergodic Theory Advances in Mathematics. Supplementary Studies 2 (1978), pp. 251-267.
  • [11] K. Lindgren, Complexity measures and cellular automata, Complex Systems 2 (4) (1988), pp. 409-440.
  • [12] N. H. Packard, Measurements of chaos in the presence of noise, Ph.D. Thesis, University of California, Santa Cruz, 1982.
  • [13] A. W. Safonov, Informational pasts in groups (in Russian), Izv. Akad. Nauk SSSR 47 (2) (1983), pp. 421-426.
  • [14] P. Shields, The theory of Bernoulli shifts, The University of Chicago Press, Chicago-London 1973.
  • [15] P. Walters, An Introduction to Ergodic Theory, Springer, New York-Heidelberg-Berlin 1982.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-462b7ca3-b28c-4fcf-9ef6-b33f9b2a4277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.