Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 44, No. 2 | 247--261
Tytuł artykułu

Aerodynamic Torque exhibits non-resonance oscillation in satellite motion

Warianty tytułu
PL
Nierezonansowe oscylacje aerodynamicznego momentu obrotowego dla satelity okołoziemskiego
Języki publikacji
EN
Abstrakty
EN
This paper deals with the non-linear oscillation of a satellite in an elliptic orbit around the Earth under the influence of aerodynamic and gravitational torque. It is assumed that the orbital plane coincides with the equatorial plane of the Earth. Using Bogoliubov–Krylov–Mitropolsky (BKM) methods of nonlinear oscillations, it is observed that the amplitude of the oscillation remains constant up to the second order of approximation. Numerically time series, 2D and 3D phase spaces are plotted for Earth Moon system using Matlab. The existence of main and parametric resonance concludes the different frequency states which transit the motion from regular to an attractor that leads to chaotic state.
PL
Artykuł poświęcony jest nieliniowej oscylacji satelity w eliptycznej orbicie wokół Ziemi pod wpływem grawitacji i aerodynamicznego momentu obrotowego. Przyjmuje się, że płaszczyzna orbity pokrywa się z płaszczyzną równikową Ziemi. Po zastosowaniu metody nieliniowych oscylacji Bogoliubova–Krylova–Mitropolsky’ego (BKM) obserwujemy, że amplituda oscylacji jest stała przy aproksymacji rzędu drugiego. Ilustracje szeregów czasowych w przestrzeni fazowej 2- i 3-wymiarowej wykonano z wykorzystaniem procedur zaimplementowanych w MatLabie. Istnienie głównej składowej rezonansu i składowych parametrycznych wyjaśnia chaotyczny charakter częstotliwości.
Wydawca

Rocznik
Strony
247--261
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr.
Twórcy
autor
autor
  • University School of Basic and Applied Sciences, Non-Linear Dynamics Research Lab, Guru Gobind Singh Indraprastha University, New Delhi, Ind, manumail05@yahoo.com
Bibliografia
  • [1] Bhardwaj, R., Tuli, R. (2003). Chaos in attitude motion of a satellite under a third body torque in an elliptic orbit (I). Indian Journal of Pure and Applied Mathematics, 34(2), 277–289. Zbl 1190.70012.
  • [2] Bhardwaj, R., Sethi, M. and Kaur, P. (2006). Rotational motion of a satellite under the influence of aerodynamic or magnetic torque. Modern Mathematical Methods and Algorithms for real world systems. Eds. A. H. Siddiqi, I. S. Duff, O. Christensen. 174–184. Anamya Publishers.
  • [3] Bhardwaj, R., Tuli, R. (2006). Non-Linear Planar Oscillation of a satellite leading to chaos under the influence of third-body torque. Mathematical Models and Methods for Real World Systems. Eds. Furati, K. M.; Nashed; Siddiqi; 301–336. Chapman and Hall/ CRC publication . Zbl Zbl 1152.70313.
  • [4] Bhardwaj, R., Kaur, P. (2006). Chaos using Matlab in the motion of a satellite under the influence of magnetic torque. Mathematical models and Methods for real world systems. Eds. Furati, Nashed, Siddiqi, 337–372. Chapman and Hall/ CRC publication. Zbl 1152.70312.
  • [5] Bhardwaj, R., Kaur, P. (2005). Chaos in non-linear oscillation of a satellite in elliptic orbit under magnetic torque. Proceedings of International Workshop on Applications of Wavelets to Real World Problems. Eds. Siddiqui, Aslan etc. 240–258. Istanbul Commerce University Publication.
  • [6] Bhardwaj, R., Bhatnagar, K. B. (1998). Nonlinear Planar Oscillation of a Satellite in a circular orbit under the influence of Magnetic Torque (II). Indian Journal of Pure and Applied Mathematics, 29(2), 139–150.
  • [7] Bhardwaj, R., Bhatnagar, K. B. (1997). Chaos in Nonlinear Planar Oscillation of a Satellite in an Elliptical Orbit under the influence of Third Body Torque. Indian Journal of Pure and Applied Mathematics, 28(3) 391–422.
  • [8] Bhardwaj, R., Bhatnagar, K. B. (1995). Nonlinear Planar Oscillation of a Satellite in a circular orbit under the influence of Magnetic Torque (I). Indian Journal of Pure and Applied Math., 26(12), 1225–1240.
  • [9] Bhardwaj, R., Bhatnagar, K. B. (1994). Rotational Motion of a Satellite on an Elliptical Orbit under the influence of Third Body Torque (I). Bulletin of Astronomical Society of India, 22, 359–367.
  • [10] Bhardwaj, R., Kaur, M. (2014). Hamiltonian function for Satellite motion in an Elliptic Orbit under the influence of Aerodynamic Torque. Indian Journal of Industrial and Applied Mathematics, 5 (2); 141–147. doi: 10.5958/1945-919X.2014.00007.3.
  • [11] Efroimsky, M. (2012). Bodily tides near spin-orbit resonances. Celestial Mechanics and Dynamical Astronomy, 112 (3), 283–330. doi: 10.1007/s10569-011-9397-4; MR 2903611; Zbl 1266.70026.
  • [12] Formiga, J. K. S., Moraes, R. V. (2008). Orbital characteristics of artificial satellites in Resonance and the correspondent geopotencial coefficients. Journal of Aerospace Engineering, Sciences and Applications, 1 (2), 33–42. doi: 10.7446/jaesa.0102.04.
  • [13] Fuse, T. (2002). Planetary perturbations on the 2:3 mean motion resonance with Neptune. Publications of the Astronomical Society of Japan, 54 (3), 493–499. doi: 10.1093/pasj/54.3.493.
  • [14] Gujjo, M. (2005). The web of three planet resonances in the outer solar system. Icarus, 174 (1), 273–284. doi: 10.1016/j.icarus.2004.10.015.
  • [15] Haghighipour, N., et.al. (2003). Stable 1:2 resonant periodic orbits in elliptic three-body Systems. The Astrophysical journal, 596, 1332–1340. doi: 10.1086/378119.
  • [16] Ipatov, S. I., Henrard, J. (2000). Evolution of orbits of Trans-Neptune bodies at the 2:3 Resonance with Neptune. Solar Syst. Res., 34 (1), 61–74.
  • [17] Ji, J., Kinoshita, H., Liu, L., Li, G. (2003). Could the 55cancri planetary system really be in the 3:1 mean motion resonance?. The Astrophysical Journal, 585, 139–142. doi: 10.1086/374391.
  • [18] Narayan, A. et al. (2012). Some non-linear resonance oscillations of dumbell satellite in elliptical orbit. International Journal of Pure and Appl. Mathematics, 78 (6), 931–944. doi: 10.14419/ijamr.v2i2.696.
  • [19] Peng, J. H., Liu, Y. Z. (2000). Chaotic attitude motion of a satellite on a Keplerian elliptic orbit. Tech Mech., 20(4), 311–318.
  • [20] Polymilis, C. et al. (2003). The homoclinic tangle of a 1:2 resonance in a 2-D Hamiltonian system. Celestial Mechanics and Dynamical Astronomy, 85 (2), 105–144.
  • [21] Stone, W. C., Witzgall, C. (2006). Evaluation of aerodynamic drag and torque for external tanks in low earth orbit. J. Res. Natl. Inst. Stand. Technol., 111(2), 143–159.
  • [22] Varadi, F. (1999). Periodic orbits in the 3:2 orbital resonance and their stability. The Astronomical Journal, 118, 2526–2531. doi: 10.1086/301088.
  • [23] Yokoyama, T. et al. (2005). On the dynamics of some resonances of Phobos in the future. Astronomy and Astrophysics, 429, 731–738. doi: 10.1051/0004-6361:20041173.
  • [24] Zanardi, M. C., Real, F. F. (2003). Environmental torques acting on a low earth orbiter cylindrical spacecraft. Advances in Space Research, 31 (8), 1981–1986. doi: 10.1016/S0273-1177(03)00167-4.
  • [25] Zanardi, M. C., Quirelli, I. M. P., Kuga, H. K. (2005). Analytical attitude prediction of spin stabilized spacecrafts perturbed by magnetic residua torque. Advances in Space Research, 36, 460–465.doi: 10.1016/j.asr.2005.07.020.
  • [26] Zhang, W., Yao, M. H., Zhang, J. H. (2009). Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. Journal of Sound and vibration, 319(1–2), 541–569. doi: 10.1016/j.jsv.2008.06.015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-45a409a0-bb83-4dd8-881b-4198f0b81f6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.