Warianty tytułu
Inteligentne wykrywanie wysokości pojazdu na drogach o ograniczonej wysokości)
Języki publikacji
Abstrakty
Traffic congestion has become more prevalent in metropolitan areas, necessitating the reorganization of roads and their management through Computer vision technologies. One of the techniques is to determine the height vehicles allowed to use the road, and identify the license plates of vehicles an efficient traffic monitoring system has been proposed. the proposed system works by detecting objects (vehicles) and use the laws of area to calculate vehicle heights, as well as license plate detection using the yolov4 and yolov5 networks.
Zatory komunikacyjne stały się bardziej powszechne w obszarach metropolitalnych, co wymaga reorganizacji dróg i zarządzania nimi za pomocą technologii wizji komputerowej. Jedną z technik jest wyznaczanie wysokości pojazdów dopuszczonych do ruchu oraz identyfikacja tablic rejestracyjnych pojazdów, zaproponowano skuteczny system monitorowania ruchu. proponowany system działa na zasadzie wykrywania obiektów (pojazdów) i wykorzystuje prawa powierzchni do obliczania wysokości pojazdów, a także wykrywanie tablic rejestracyjnych za pomocą sieci yolov4 i yolov5.
Czasopismo
Rocznik
Tom
Strony
84--88
Opis fizyczny
Bibliogr. 26 poz.,rys., tab.
Twórcy
autor
- Northern Technical University, Engineering Technical College of Mosul, Department of Computer Engineering Technology, Iraq, e.a.mohammed@ntu.edu.iq
autor
- Northern Technical University, Engineering Technical College of Mosul, Department of Computer Engineering Technology, Iraq, emad.sluman@ntu.edu.iq
Bibliografia
- [1] Dr. Bhavesh , S. A. Goswami, Preyash S. K., Realtime Object’s Size Measurement from Distance using OpenCV and LiDAR, Turkish Journal of Computer and Mathematics Education, Vol.12 no. 4, pp. 1044-1047, 2021
- [2] K.B. Sathya,S.Vasuhi,V. Vaidehi,Perspective Vehicle License Plate Transformation using Deep Neural Network on Genesis of CPNet, Procedia Computer Science journal, Vol.171, no. 1, pp. 1858-1867, 2020.
- [3] Y. Jamtsho, P. Riyamongkol, R. Waranusast, Real-time Bhutanese license plate localization using YOLO, ICT Express, Vol.6, no.11, pp. 121-124, 2020.
- [4] A. Mohsin , A. H. Hassin, Iman Q. Abdul Jaleel ,An Automatic Recognizer for Iraqi License Plates Using ELMAN Neural Network, ICT Express, Vol.3, no.12, pp. 1163-1166, 2010.
- [5] T. Kim , B. Yun , K. Park , Recognition of Vehicle LicensePlates Based on Image Processing, MDPI Journal, Vol.11, no. 6292, 2021.
- [6] P. Shah, S. Karamchandani, T. Nadkar, OCR-based ChassisNumber Recognition using Artificial Neural Networks, IEEE, no.1, pp. 31-34, 2009.
- [7] Safaa S. Omran, Jumana A. Jarallah, Iraqi License Plate Localization and Recognition System Using Neural Network, IEEE, no.7, pp. 75-80, 2017.
- [8] Najwan W., Nawal AB., Mohammed G., The Automatic Detection of Underage Troopers from Live-Videos Based on Deep Learning, Przegląd Elektrotechniczny, vol. 97, no. 9, pp. 87-90, 2021.
- [9] Md. Saif H. Onim, M. Islam Akash, Traffic Surveillance using Vehicle License Plate Detection and Recognition in Bangladesh, International Conference on Electrical and Computer Engineering (ICECE), Vol.1, no.18, 2020.
- [10] I. NEVINDRA, M. S. LARASATI, Automatic Indonesian License Plate Recognition with YOLO As Object Detector, IRE Journals, Vol.5, no.6, pp 186-192, 2021.
- [11] Salma, M.Saeed, R. Rahim, M. G. Khan, Development of ANPR Framework for Pakistani Vehicle Number Plates Using Object Detection and OCR, Hindawi Journals, Vol.2021, no.7, pp. 1-14, 2021.
- [12] A. Jain, J. Gupta , S. Khandelwal, S. Kaur , Vehicle License Plate Recognition, Fusion: Practice and Applications (FPA), Vol. 4, no. 1, pp. 15-21, 2021.
- [13] Z. Chen, J. Juang, YOLOv4 Object Detection Model for Nondestructive Radiographic Testing in Aviation Maintenance Tasks, AIAA JOURNAL, Vol. 60, no.1, pp. 526-531, 2022.
- [14] Wojskowa A. T., Wydział E., Instytut R., System inteligentny rozpoznawania znaków drogowych, Przegląd Elektrotechniczny, Vol. 92, no.1, pp. 43-46, 2016.
- [15] C. Wang, H. M. Liao, I-Hau Yeh, Yueh-Hua Wu, A NEW BACKBONE THAT CAN ENHANCE LEARNING CAPABILITY OF CNN, arXiv:1911.11929, 2019.
- [16] J. Chmielińska and J. Jakubowski , Application of convolutional neural network to the problem of detecting selected symptoms of driver fatigue, Przegląd Elektrotechniczny, vol. 93, no. 10, pp. 6-10, 2017.
- [17] P. Mahto, P. Garg, P. Seth, J. Panda, REFINING YOLOV4 FOR VEHICLE DETECTION, International Journal of Advanced Research in Engineering and Technology (IJARET), Vol. 11, no. 6, PP. 409-419, 2020.
- [18] U. Nepal , H. Eslamiat , Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs, Sensors Journals, Vol. 22, no. 2, pp. 1-15, 2022.
- [19] M. A. Duran, M. Gonzalez, L. Chang, C.Ramirez, , A TEMPORAL YOLOV5 DETECTOR BASED ON QUASIRECURRENT NEURAL NETWORKS FOR REAL-TIME HANDGUN DETECTION IN VIDEO, arXiv:2111.08867, Vol. 2, 2021.
- [20] Mahammad A. H., Safat B. W., Tan J. P., Aini H., Salina A. S., Traffic Sign Classification based on Neural Network for Advance river Assistance System, Przegląd Elektrotechniczny, vol. 90, no.11, pp. 171-174, 2014.
- [21] L. Zhu , X. Geng , Z. Li, C. Liu, Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images, MDPI Journal, Vol. 2, no.13, pp. 3776 ,2021.
- [22] Safat B. W., Mohammad A. H., Aini H., Salina A. S., Comparative Survey on Traffic Sign Detection and Recognition: a Review, Przegląd Elektrotechniczny, vol. 91, no.12, pp. 40-44, 2015.
- [23] D. L. Yuan, Y. Xu, Lightweight Vehicle Detection Algorithm Based on Improved YOLOv4, Engineering Letters, Vol. 29, no.4, 2021.
- [24] M. Jaderberg, K. Simonyan ,A. Zisserman , Spatial Transformer Networks, arXiv:1506.02025, Vol. 3,pp.1-15, 2016.
- [25] I. NEVINDRA, M. S. LARASATI, B. KIMBERLEY, Automatic Indonesian License Plate Recognition with YOLO As Object Detector, CONIC RESEARCH AND ENGINEERING JOURNALS, Vol. 5, no.6, pp. 184-190, 2021.
- [26] V. Sowmya, R.Radha Efficiency-Optimized Approach- vehicle Classification Features Transfer Learning and Data Augmentation Utilizing Deep Convolutional Neural Networks, International Journal of Applied Engineering Research, no. 4, pp.372-376, 2020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-45964e2e-7ab9-430b-a850-bd50b2137a4d