Czasopismo
2022
|
Vol. 22, no. 1
|
art. no. e10, 2022
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Possibilities of improving the workability of the CuZn37 brass thin wire in a diameter of 0.14–0.18 mm produced by the dieless drawing processes were explored. The workability was defined as the maximum final longitudinal strain of the wire up to its fracture, achievable in the dieless drawing process. Two technologies of dieless drawing were developed and their workability was compared. The first one is the classical one-pass process; the second, a multi-pass one. For both developed technologies, it was possible to obtain a good-quality product but more than two times higher workability has been demonstrated for the multi-pass technology. No evident effect of the deformation temperature from the window of technologically accepted parameters on the workability was found but an increase in the temperature significantly increased the roughness of the product surface. For the same deformation temperature, the roughness of the wire obtained from the multi-pass process appeared to be significantly lower than for the one of the classical one-pass technologies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e10, 2022
Opis fizyczny
Bibliogr. 33 poz., fot., rys., wykr.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland, pkustra@agh.edu.pl
Bibliografia
- 1. Singh J, Singh R, Kumar R. Review on effects of process parameters in wire cut EDM and wire electrode development. Int J Innov Res Sci Technol. 2016;2:701–6.
- 2. Jewelry wire:everything you need to know, (n.d.). https://door44studios. com/ jewel ry- wire- every thing- you- need- to- know- to-make-the-best-choice/ Accessed 8 May 2021.
- 3. Kraft FB. Three fine wire drawing systems – en economic comparison. Wire J. 1980;19:103–5.
- 4. Weiss V, Kot RA. Dieless wire drawing with transformation plasticity. Wire J. 1969;9:182–9.
- 5. Supriadi S, Furushima T, Manabe K-I. Development of precision profile control system with fuzzy model and correction function for tube dieless drawing. J Solid Mech Mater Eng. 2011;5:1059–70. https://doi.org/10.1299/jmmp.5.1059.
- 6. Li K, Wang Z, Liu X. Study of deformation stability during semi-dieless drawing of Ti-6Al-4V alloy wire. Materials (Basel). 2019. https://doi.org/10.3390/ma12081320.
- 7. Tiernan P, Hillery MT. Dieless wire drawing - An experimental and numerical analysis. J Mater Process Technol. 2004;155–156:1178–83. https://doi.org/10.1016/j.jmatprotec.2004.04.175.
- 8. Li Y, Quick NR, Kar A. Dieless laser drawing of fine metal wires. J Mater Process Technol. 2002;123:451–8. https:// doi. org/ 10.1016/S0924-0136(02)00110-3.
- 9. Milenin A. Rheology-based approach of design the dieless drawing processes. Arch Civ Mech Eng. 2018;18:1309–17. https://doi.org/10.1016/j.acme.2018.04.003.
- 10. Considère A. Mémoire sur l’emploi du fer et de l’acier dans les constructions. Ann Des Ponts Chaussées. 1885;34:574–95.
- 11. Slomchack GD, Milenin AA, Mamuzić I, Vodopivec F. A mathematical model of the formation of the plastic deformation zone in the rolling of rheologically complex metals and alloys. J Mater Process Technol. 1996;58:184–8. https://doi.org/10.1016/0924-0136(95)02099-3.
- 12. Bylya OI, Khismatullin T, Blackwell P, Vasin RA. The effect of elasto-plastic properties of materials on their formability by flow forming. J Mater Process Technol. 2018;252:34–44. https://doi.org/10.1016/j.jmatprotec.2017.09.007.
- 13. Soboyejo WO. Mechanical properties of engineered materials. New York: Marcel Dekker; 2003.
- 14. Y.G. Li, Laser Micro-processing and thermomechanical modeling of plasticity for dieless wire drawing, doctoral dissertation 1591, University of Central Florida. 2002. https://stars.library.ucf.edu/rtd/1591/.
- 15. He Y, Liu X, Xie J, Zhang H. Processing limit maps for the stable deformation of dieless drawing. Int J Miner Metall Mater. 2011;18:330. https://doi.org/10.1007/s12613-011-0443-8.
- 16. Milenin A, Furushima T, Du P, Pidvysots’kyy V. Improving the workability of materials during the dieless drawing processes by multi-pass incremental deformation. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00092-4.
- 17. Wright RN, Wright EA. Basic analysis of dieless drawing. Wire J Int. 2000;33:138–43.
- 18. Laporte V, Mortensen A. Intermediate temperature embrittlement of copper alloys. Int Mater Rev. 2009;54:94–116. https://doi.org/10.1179/174328009X392967.
- 19. Furushima T, Manabe K. Dieless drawing process of extruded non-circular aluminum alloy tubes with double hollow section. J Jpn Inst Light Met. 2007;57:351–6. https://doi.org/10.2464/jilm.57.351.
- 20. Furushima T, Imagawa Y, Manabe KI, Sakai T. Effects of oxidation and surface roughening on drawing limit in dieless drawing process of SUS304 stainless steel microtubes. J Mater Process Technol. 2015;223:186–92. https://doi.org/10.1016/j.jmatprotec.2015.03.033.
- 21. Milenin A, Furushima T, Němeček J. Transformation of surface roughness of mg alloy tubes during laser dieless drawing. J Mater Eng Perform. 2020;29:7736–43. https://doi.org/10.1007/s11665-020-05234-6.
- 22. Milenin A, Byrska-Wójcik D, Wróbel M. Physical modelling of strain induced roughness of copper wire during dieless drawing process. Mater Sci Forum. 2021;1016:900–5.
- 23. The Texture Analysis Software for Windows, (n.d.). http://www.labosoft.com.pl Accessed 8 May 2021.
- 24. Schulz LG. A direct method of determining preferred orientation of a flat reflection sample using a Geiger counter x-ray spectrometer. J Appl Phys. 1949;20:1030–3. https:// doi. org/ 10. 1063/1.1698268.
- 25. Stout MG, O’Rourke JA. Experimental deformation textures of OFE copper and 70:30 brass from wire drawing, compression, and torsion. Metall Trans A. 1989;20:125–31. https://doi.org/10.1007/BF02647499.
- 26. Hansel A, Spittel T. Kraft- und arbeitsbedarf bildsamer formge-bungsverfahren. Lipsk: VEB Deutscher Verlag für Grundstoffin-dustrie; 1978.
- 27. Szeliga D, Pietrzyk M. Testing of the inverse software for identification of rheological models of materials subjected to plastic deformation. Arch Civ Mech Eng. 2007;7:35–52. https://doi.org/10.1016/S1644-9665(12)60003-X.
- 28. A. Milenin, P. Kustra, J.-M. Seitz, F.-W. Bach, D. Bormann, Production of thin wires of magnesium alloys for surgical applications, in: 2010 Conf. Proc. Wire Assoc. Int. Inc. - Wire Cable Tech. Symp. 80th Annu. Conv. 2010.
- 29. N. Biba, A. Maximov, S. Stebunov, A. Vlasov, The model for simulation of thermally, mechanically and physically coupled problems of metal forming, in: D.S. J. Kusiak, J. Majta (Ed.), Proc. 14th Int. Conf. Met. Form., Kraków. 2012: pp. 1363–1366.
- 30. The programming language Lua. 2021. http:// www. lua. org/Accessed 8 May 2021.
- 31. Ozgowicz W, Grzegorczyk B. The influence of the temperature of plastic deformation on the structure and mechanical properties of copper alloys CuCo2Be and CuCo1Ni1Be. Arch Mater Sci Eng. 2009;39(1):5–12.
- 32. Furushima T, Manabe K. Experimental study on multi-pass dieless drawing process of superplastic Zn–22%Al alloy microtubes. J Mater Process Tech. 2007;187–188:236–40. https://doi.org/10.1016/j.jmatprotec.2006.11.204.
- 33. Osakada K, Oyane M. On the roughening of free surface in deformation processes. Bull JSME. 1971;14:171–7. https://doi.org/10.1299/jsme1958.14.171.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-45527b26-efc8-4dc9-b648-67a07964098e