Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | Vol. 64, no. 5 | 1563--1592
Tytuł artykułu

Chaotic Behavior of Soil Radon Gas and Applications

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The soil 222Rn concentration non-linear patterns are investigated by the application of various chaos methodologies based on 70 272 measurement data from the East Anatolian Fault Zone, which is one of the world’s most active faults. Among these methodologies are Lyapunov exponent, surrogate data, rescaled range (R/S) analysis, Fourier spectrum, phase space reconstruction, mutual information, false nearest neighbors, and correlation dimension. The results indicate that the nonlinear dynamical approach is convenient for characterization and prediction of the 222Rn concentration dynamics, which are in turn usually used as an earthquake precursor. Behaviour of 222Rn gas is important in earthquake prediction researches.
Wydawca

Czasopismo
Rocznik
Strony
1563--1592
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
  • Nuclear Physics Division, Department of Physics, Faculty of Science, Fırat University, Elazig, Turkey, m.kamislioglu@gmail.com
autor
  • Nuclear Physics Division, Department of Physics, Faculty of Science, Fırat University, Elazig, Turkey
Bibliografia
  • Abarbanel, H.D.I., R. Brown, J.J. Sidorowich, and L.S. Tsimring (1993), The analysis of observed chaotic data in physical systems, Rev. Mod. Phys. 65, 4, 1331-1392, DOI: 10.1103/RevModPhys.65.1331.
  • Albarello, D., V. Lapenna, G. Martinelli, and L. Telesca (2003), Extracting quantitative dynamics from 222Rn gaseous emissions of mud volcanoes, Environmetrics 14, 1, 63-71, DOI: 10.1002/env.565.
  • Alvarez-Ramirez, J., J. Alvarez, E. Rodriguez, and G. Fernandez-Anaya (2008), Time-varying hurst exponent for US stock markets, Physica A 387, 24, 6159-6169, DOI: 10.1016/j.physa.2008.06.056.
  • Bak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized critically, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
  • Bourai, A.A., S. Aswal., A. Dangwal, M. Rawat, M. Prasad, N.P. Naithani, V. Joshi, and R.C. Ramola (2013), Measurements of radon flux and soil-gas radon concentration along the Main Central Thrust, Garhwal Himalaya, using SRM and RAD7 detectors, Acta Geophys. 61, 4, 950-957, DOI: 10.2478/ s11600-013-0132-2.
  • Chaudhuri, H., C. Barman, A.N.S. Iyengar, D. Ghose, P. Sen, and B. Sinha (2013), Network of seismo-geochemical monitoring observatories for earthquake prediction research in India, Acta Geophys. 61, 4, 1000-1025, DOI: 10.2478/s11600-013-0134-0.
  • Chouet, B., and H.R. Shaw (1991), Fractal properties of temor and gas piston events observed at Kilauea Volcano Hawaii, J. Geophys. Res. 96, B6, 10177- 10189, DOI: 10.1029/91JB00772.
  • Chyi, L.L., T.J. Quick, T.F. Yang, and C.H. Chen (2010), The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast, Geofluids 10, 4, 556-563, DOI: 10.1111/j.1468-8123.2010. 00308.x.
  • Cothern, C.R., and J.E. Smith (1987). Environmental Radon, Environmental Science Research, Vol. 35, Plenum Press, New York. Crisanti, A., M.H., Jensen, A. Vulpiani, and G. Paladin (1992), Strongly intermittent chaos and scaling in an earthquake model, Phys. Rev. Lett. 46, 12, 7363- 7366, DOI: 10.1103/PhysRevA.46.R7363.
  • Cuculeanu, V., and A. Lupu (1996), Fractal dimensions of the outdoor radon isotopes time series, Environ. Int. 22, 1, 171-179, DOI: 10.1016/S0160- 4120(96)00105-5.
  • Das, N.K., P. Sen, R.K. Bhandari, and B. Sinha (2009), Nonlinear response of radon and its progeny in spring emission, Appl. Radiat. Isotopes 67, 2, 313-318, DOI: 10.1016/j.apradiso.2008.09.016.
  • Durrani, S.A., and R. Ilić (eds.) (1997), Radon Measurements by Etched Track Detectors. Applications in Radiation Protection, Earth Sciences and the Environment, World Scientific Publ. Co. Pte. Ltd, Signapore.
  • Eckhardt, B., and D. Yao (1993), Local Lyapunov exponents in chaotic systems, Physica D 65, 1-2, 100-108, DOI: 10.1016/0167-2789(93)90007-N.
  • Eckmann, J.P., and D. Ruelle (1985), Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57, 3, 617-656, DOI: 10.1103/RevModPhys.57.617.
  • Feller, W. (1951), The asymptotic distribution of the range of sums of independent random variables. Ann. Math Stat. 22, 3, 427-443, DOI: 10.1214/aoms/ 1177729589.
  • Fleischer, R.L. (1981), Discolation model for radon response to distant earthquakes, Geophys. Res. Lett. 8, 5, 477-480, DOI: 10.1029/GL008i005p00477.
  • Fleischer, R.L., and A. Magro-Campero (1985), Association of subsurface radon changes in Alaska and the northeastern United States with earthquakes, Geochim. Cosmochim, Ac. 49, 4, 1061-1071, DOI: 10.1016/0016-7037(85) 90319-9.
  • Fraser, A.M., and H.L. Swinney (1986), Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33, 2, 1134-1140, DOI: 10.1103/PhysRevA.33.1134.
  • Frazier, C., and K.M. Kockelman (2004), Chaos theory and transportation systems: an instructive, J. Transport. Res. Board. 1897, 9-17, DOI: 10.3141/1897- 02.
  • Friedmann, H., K. Aric, R. Gutdeutsch, C.Y. King, C. Altay, and H. Sav (1988), Radon measurements for earthquake prediction along the North Anatolian zone: a progress report, Tectonophysics 152, 3-4, 209-214, DOI: 10.1016/ 0040-1951(88)90047-9.
  • Ghosh, D., A. Deb, R. Sengupta, K. Patra, and S. Bera (2007), Pronounced soilradon anomaly-precursor of recent earthquakes in India, Radiat. Meas. 42, 3, 466-471, DOI: 10.1016/j.radmeas.2006.12.008.
  • Grassberger, P., and I. Procaccia (1983), Characterization of strange attractors, Phys. Rev. Lett. 50, 5, 346-349, DOI: 10.1103/PhysRevLett.50.346.
  • Gutenberg, B., and C.F. Richter (1954), Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton, NJ.
  • Harris, C.M., R.W. Todd, S.J. Bungard, R.W. Lovitt, J.G. Morris, and D.B. Kell (1987), The dielectric permittivity of microbial suspensions at radio frequencies: a novel method for estimation of microbial biomass, Enzyme Microb. Tech. 9, 3, 181-186, DOI: 10.1016/0141-0229(87)90075-5.
  • Hurst, H.E. (1951), Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil. Eng. 116, 770-808.
  • Igarashi, G., and S. Saeki (1995), Groundwater radon anomaly before the Kobe earthquake in Japan, Science 269, 5220, 60-61, DOI: 10.1126/science.269. 5220.60.
  • Kamışlıoğlu, M., F. Külahcı, and F. Özkaynak (2013), Nonlinear reply of soil radon ( 222Rn) gas measurements and deterministic chaos, Chaotic Model. Simul. (CMSIM) 2, 153-160.
  • Kaplan, J., and J. Yorke (1979), Functional Differential Equations and the Approximation of Fixed Points, Lecture Notes in Mathematics, No. 730, Springer Verlag, Berlin.
  • Karig, D.E., and H. Kozlu (1990), Late Paleogene-Neogene evolution of the triple junction region near Maraş, south-central Turkey, J. Geol. Soc. 147, 6, 1023-1034, DOI: 10.1144/gsjgs.147.6.1023.
  • Kennel, M.B., R. Brown, and H.D.I. Abarbanel (1992), Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A 45, 6, 3403-3411, DOI: 10.1103/PhysRevA.45.3403.
  • Khatibi, R., B. Sivakumar, M.A. Ghorbani, O. Kisi, K. Kocak, and D. Farshidizadeh (2012), Investigating chaos in river stage and discharge time series, J. Hydrol. 414, 108-117, DOI: 10.1016/j.jhydrol.2011.10.026.
  • King, C.Y. (1986), Gas geochemistry applied to earthquake prediction: an overview, J. Geophys. Res. 91, B12, 2269-2281, DOI: 10.1029/JB091iB12p12269.
  • King, C.Y., W. Zhang, and B.S. King (1993), Radon anomalies on three kind of faults in California, Pure Appl. Geophys. 141, 1, 111-124, DOI: 10.1007/ BF00876238.
  • Koçak, K., and Z. Şen (1998), More information regarding dynamical systems via convergence to correlation dimension, Interdiscipl. J. Phys. Eng. Sci. 51, 1, 1-5, DOI: 10.1007/s007770050022.
  • Külahcı, F., and Z. Şen (2014), On the correction of spatial and statistical uncertainties in systematic measurements of 222Rn for earthquake prediction, Surv. Geophys. 35, 2, 449-478, DOI: 10.1007/s10712-013-9273-8.
  • Külahcı, F., M. İnceöz, M. Doğru, E. Aksoy, and O. Baykara (2009), Artifical neural network model for earthquake prediction with radon monitoring, Appl. Radiat. Isotopes 67, 1, 212-219, DOI: 10.1016/j.apradiso.2008.08.003.
  • Kumar, A., V. Walia, T.F. Yang, H.H. Chang, S.J. Lin, K.P. Eappen, and B.R. Arora (2013), Radon-thoron monitoring in Tatun volcanic areas of northern Taiwan using LR-115 alpha track detector technique: Pre-calibration and installation, Acta Geophys. 61, 4, 958-976, DOI: 10.2478/s11600-013- 0120-6.
  • Kumar, N., G. Rawat., V.M. Choubey., and D. Hazarika (2013), Earthquake precursory research in western Himalaya based on the multi-parametric geophysical observatory data, Acta Geophys. 61, 4, 977-999, DOI: 10.2478/s11600- 013-0133-1.
  • Lakshmi, S.S., and R.K. Tiwari (2009), Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches, Computat. Geosci. 35, 2,191-204, DOI: 10.1016/j.cageo.2007.11.011.
  • Lane-Smith, D., and K.W.W. Sims (2013), The effect of CO2 on the measurement of Rn-220 and Rn-222 with instruments utilising electrostatic precipitation, Acta Geophys. 61, 4, 822-830, DOI: 10.2478/s11600-013-0107-3.
  • Martinelli, G. (2015), Hydrogeologic and geochemical precursor of earthquakes: an assesment for possible applications, Boll. Geof. Teor. Appl. 56, 2, 83-94.
  • McCloskey, J. (1993), A hierarchical model for earthquake generation on coupled segments of a transform fault, Geophys. J. Int. 115, 2, 538-551, DOI: 10.1111/j.1365-246X.1993.tb01205.x.
  • Miklavčić, I., B. Radolić, M. Vuković, M. Poje, M. Varga, D. Stanić, and J. Planinić (2008), Radon anomaly in soil gas an earthquake precursor, Appl. Radiat. Isotopes 66, 10, 1459-1466, DOI: 10.1016/j.apradiso.2008.03.002.
  • Namvaran, M., and A. Negarestani (2015), Noise reduction in radon monitoring data using Kalman filter and application of results in earthquake precursory process research, Acta Geophys. 63, 2, 329-351, DOI: 10.2478/s11600-014- 0218-5.
  • Planinić, J., B. Vuković, and V. Radolić (2004), Radon time variations and deterministic chaos, J. Environ. Radioactiv. 75, 1, 35-45, DOI: 10.1016/j.jenvrad. 2003.10.007.
  • Provenzale, A., L.A. Smith, R. Vio, and G. Murante (1992), Distinguishing between low-dimensional dynamics and randomness in measured time series, Physica D 1-4, 58, 31-49, DOI: 10.1016/0167-2789(92)90100-2.
  • Qiang, L., and X. Gui-Ming (2012), Characteristic variation of local scaling property before Puer M6.4 earthquake in China: The presence of a new pattern of nonlinear behavior of seismicity, Izv. Phys. Solid Earth 48, 2, 155-161, DOI: 10.1134/S1069351312010107.
  • Sakata, S., J. Hayano, S. Mukai, A. Okada, B. Galdrikian, and J.D. Farmeret (1999), Aging and spectral characteristic of the nonharmonic component of 24-h heart rate variability, Am. J. Physiol.–Reg. 276, 1724-1731.
  • Sano, M., and Y. Sawada (1985), Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett. 55, 10, 1082-1085, DOI: 10.1103/ PhysRevLett.55.1082.
  • Sato, S., M. Sano, and Y. Sawada (1987), Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems, Prog. Theor. Phys. 77, 1, 1-5, DOI: 10.1143/PTP.77.1.
  • Şen, Z. (1977a), Small sample estimation of h, Water Resour. Res. 13, 6, 971-974, DOI: 10.1029/WR013i006p00971.
  • Şen, Z. (1977b), Small sample expectation of population and adjusted ranges, Water Resour Res. 13, 6, 975-980, DOI: 10.1029/WR013i006p00975.
  • Şen, Z. (1977c), Small sample expectation of rescaled population and rescaled adjusted ranges, Water Resour. Res. 13, 6, 981-986, DOI: 10.1029/ WR013i006p00981.
  • Smirnov, V.B., A.V. Ponomarev, Q. Jiadongand, and A.S. Cherepantsev (2005), Rhythms and deterministic chaos in geophysical time series, Izv. Phys. Solid Earth 41, 6, 428-448.
  • Smith, L.A., J.D. Fournier, and E.A. Spiegel (1986), Lacunarity and intermittency in fluid turbulence, Phys. Lett. A 114, 8-9, 465-468, DOI: 10.1016/0375- 9601(86)90695-X.
  • Sprott, J (2003), Chaos and Time-Series Analysis, Oxford University Press, New York.
  • Sugihara, G., and R.M. May (1990), Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature 344, 6268, 734- 741, DOI: 10.1038/344734a0.
  • Takens, F. (1981), Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, Vol. 898, Springer, Berlin, Heidelberg, 366-381, DOI: 10.1007/BFb0091924.
  • Tarakçı, M., C. Harmanşah, M.M. Saç, and M. İçhedef (2014), Investigation of the relationships between seismic activities and radon level in Western Turkey, Appl. Radiat. Isotopes 83A, 12-17, DOI: 10.1016/j.apradiso.2013.10.008.
  • Theiler, J. (1988), Lacunarity in a best estimator of fractal dimension, Phys. Lett. A 133, 4-5, 195-200, DOI: 10.1016/0375-9601(88)91016-X.
  • Theiler, J. (1991), Some comments on the correlation dimension of 1/fα noise, Phys. Lett. A 155, 8-9, 480-493, DOI: 10.1016/0375-9601(91)90651-N.
  • Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer (1992), Testing for nonlinearity in time series: the method of surrogate data, Physica D 58, 1-4, 77-94, DOI: 10.1016/0167-2789(92)90102-S.
  • Tiwari, R.K., S.S. Lakshmi, and K.N.N. Rao (2004), Characterization of earthquake dynamics in northeastern India regions: A modern nonlinear forecasting approach, Pure. Appl. Geophys. 161, 4, 865-880, DOI: 10.1007/s00024- 003-2476-z.
  • Ulomov, V.I., and B.Z. Mavashev (1967), A precursor of strong tectonic earthquake, Dokl. Acad. Sci. USSR Earth Sci. Sect. 176, 9-11.
  • Wakita, H., G. Igarashi, and K. Notsu (1991), An anomalous radon decrease in groundwater prior to an M6.0 Earthquake: A Possible Precursor? Geophys. Res. Lett. 18, 4, 629-632, DOI: 10.1029/91GL00824.
  • Woith, H. (2015), Radon earthquake precursor: A short review, Eur. Phys. J. Spec. Top. 224, 4, 611-627, DOI: 10.1140/epjst/e2015-02395-9.
  • Wolf, A. (1985), Determining Lyapunov exponents from a time series, Physica D 16, 3, 285-317, DOI: 10.1016/0167-2789(85)90011-9.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-45210334-9db4-4932-bf84-9bd3c5dd46d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.