Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | No. 65 (1) | 100--116
Tytuł artykułu

Intermediate plumes of low oxygen in the southeastern Baltic Sea

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Closely spaced CTDO profiling on the pathway of saltwater flow in the southeastern Baltic Sea in August and December 2019 revealed low oxygen intermediate layers-plumes with dissolved oxygen concentration (DOC) less than 2 mg/l under the upper boundary of permanent halocline. At the same time, DOC in the underlying layers was higher and reached 5.0–5.3 mg/l. In order to test the hypotheses about the origin of the intermediate hypoxic plumes, numerical hydrodynamic modelling was performed for time intervals including the measurement periods. The model was validated against bottom current velocity instrumental measurements by a TCM (Tilt Current Meter) moored on the track of the CTDO profiling. Numerical experiments with Lagrangian particles of neutral buoyancy coupled with the operational circulation model showed that sub-halocline hypoxic intermediate layers in the southern part of the Eastern Gotland Basin and in the Gdańsk Basin could be formed as a result of intrusion into the underlying bottom layer of denser, moderately oxygenated water from the Słupsk Furrow, which replaced the old anoxic and hypoxic water of Gotland and Gdańsk origin. It is assumed that cyclonic eddy activity above the saltwater flow along sloping bottom caused fragmentation of the hypoxic intermediate layer into separate plumes. The hypoxic intermediate layers in the Słupsk Furrow, in accordance with the results of monitoring measurements and modelling the motion of particles of neutral buoyancy, could be formed in the Bornholm Basin and moved eastward over the Słupsk Sill.
Wydawca

Czasopismo
Rocznik
Strony
100--116
Opis fizyczny
Bibliogr. 19 poz., map., rys., wykr.
Twórcy
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
autor
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia, vpaka@mail.ru
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia, ao.korzh@yandex.ru
Bibliografia
  • 1. Bełdowski, J., Long, T., Söderström, M., 2018. Introduction. In: NATO Science for Peace and Security Series C: Environmental Security. Springer Science + Business Media, 1-17. https://doi.org/10.1007/978-94-024-1153-9_1
  • 2. Blumberg, A.F., Mellor, G.L., 1987. A Description of a Three-Dimensional Coastal Ocean Circulation Model. American Geophysical Union, Washington, DC, 17 pp.
  • 3. Döös, K., Meier, H.E.M., Döscher, R., 2004. The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. Ambio 33 (4), 261-266. https://doi.org/10.1579/0044-7447-33.4.261
  • 4. Elken, J., 1996. Deep water overflow, circulation and vertical exchange in the Baltic Proper. Estonian Marine Institute Report Series 6, 91 pp.
  • 5. Elken, J., Matthäus, W., 2008. Physical system description, Annex A1. In: The BACC I Author Team (Ed.), Assessment of Climate Change for the Baltic Sea Basin. Springer-Verlag, Berlin-Heidelberg, 379-386.
  • 6. Gelumbauskaite, L. Z., Grigelis, A., Cato, I., Repecka, M., Kjellin, B., 1999. Bottom Topography and Sediment Maps of the Central Baltic Sea, LGT Series of Marine Geological Maps No. 1, SGU Series of Geological Maps BA No. 54, Scale 1:500000. Vilnius: Lithuanian-Swedish project GEOBALT.
  • 7. Holtermann, P., Prien, R., Naumann, M., Umlauf, L., 2020. Interleaving of oxygenized intrusions into the Baltic Sea redoxcline. Limnol. Oceanogr. 65, 482-503. https://doi.org/10.1002/lno.11317
  • 8. Krek, A.V., Paka, V.T., Krek, E.V., Ezhova, E.E., Dorokhov, D.V., Kondrashov, A.A., Bubnova, E.S., Ponomarenko, E.P., Bashirova, L.D., Kapustina, M.V., 2019. Complex research in the 44th cruise of rv Akademik Boris Petrov. Okeanologia 59 (5), 888-890. https://doi.org/10.31857/S0030-1574595888-890
  • 9. Paka, V.T., Golenko, N., Korzh, A., 2006. Distinctive features of water exchange across the Słupsk Sill (a full-scale experiment). Oceanologia 48 (S), 37-54.
  • 10. Paka, V.T., Zhurbas, V.M., Golenko, M.N., Korzh, A.O., Kondrashov, A.A., Shchuka, S.A., 2019. Innovative closely spaced profiling and microstructure measurements in the southern Baltic Sea in Summer/Autumn 2016—2018 with special reference to the bottom layer. Front. Earth Sci. 7. https://doi.org/10.3389/feart.2019.00111
  • 11. Paka, V.T., Golenko, M.N., Kondrashov, A.A., Korzh, A.O., Lander, M.R., Obleukhov, S.D., Podufalov, A.P., 2020. On improvement and further development of the moving vessel vertical profiler. J. Oceanol. Res. 48 (4), 141-154. (in Russian). https://doi.org/10.29006/1564-2291.JOR-2020.48(4).6
  • 12. Rak, D., Walczowski, W., Dzierzbicka-Głowacka, L., Shchuka, S., 2020. Dissolved oxygen variability in the southern Baltic Sea in 2013—2018. Oceanologia 62 (4), 525-537. https://doi.org/10.1016/j.oceano.2020.08.005
  • 13. Sanderson, H., Fauser, P., Thomsen, M., Vanninen, P., Soderstrom, M., Savin, Y., Khalikov, I., Hirvonen, A., Niiranen, S., Missiaen, T., Gress, A., Borodin, P., Medvedeva, N., Polyak, Y., Paka, V., Zhurbas, V., Feller, P., 2010. Environmental hazards of sea-dumped chemical weapons. Environ. Sci. Technol. 44 (12), 4389-4394. https://doi.org/10.1021/es903472a
  • 14. Seifert, T., Tauber, F., Kayser, B., 2001. A high resolution spherical grid topography of the Baltic Sea. Baltic Sea Science Congress, Stockholm Nov. 25-29, Poster No 147, 2nd edn. http://www.io- warnemuende.de/topography- of- the- baltic-sea.html
  • 15. Zhurbas, V.M., Paka, V.T., 1997. Mesoscale thermohaline variability in the Eastern Gotland Basin following the 1993 major Baltic inflow. J. Geophys. Res. — Oceans 102 (C9), 20917-20926. https://doi.org/10.1029/97JC00443
  • 16. Zhurbas, V.M., Oh, I.S., Paka, V.T., 2003. Generation of cyclonic eddies in the Eastern Gotland Basin of the Baltic Sea following dense water inflows: Numerical experiments. J. Mar. Syst. 38, 323-336. https://doi.org/10.1016/S0924-7963(02)00251-8
  • 17. Zhurbas, V., Stipa, T., Mälkki, P., Paka, V., Golenko, N., Hense, I., Sklyarov, V., 2004. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: Observations and numerical experiments. J. Geophys. Res. — Oceans, 109 (C05033). https://doi.org/10.1029/2003JC002074
  • 18. Zhurbas, V.M., Kuzmina, N.P., Elken, J., Väli, G., Paka, V.T., 2010. Pathways of suspended particles transport in the bottom layer of the Southern Baltic Sea depending on the wind forcing (numerical simulation). Oceanology 50 (6), 841-854. https://doi.org/10.1134/S0001437010060032
  • 19. Zhurbas, V., Elken, J., Paka, V., Piechura, J., Väli, G., Chubarenko, I., Golenko, N., Shchuka, S., 2012. Structure of unsteady overflow in the Słupsk Furrow of the Baltic Sea. J. Geophys. Res. — Oceans, 117 (C04027). https://doi.org/10.1029/2011jc007284116
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-44ed8c33-e75a-4035-afd1-e56c5a0e6b24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.