Czasopismo
2017
|
Vol. 25, No. 4
|
290--295
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this work, an electrically tunable long-period fiber grating (LPFG) coated with liquid crystal layer (LC) is presented. As a LC layer, a prototype low-birefringence 1550A LC mixture was chosen. As a LPFG host, two types of gratings were studied: the LPFGs based on a standard telecommunication fiber, produced by an electric arc technique with a period of 222 µm, and the LPFGs based on a boron co-doped fiber written by a UV technique with a period of 226.8 µm. The relatively short period of these gratings allowed exploiting unique sensing properties of the attenuation bands associated with modes close to the turn-around point. Experiments carried out showed that for the UV-induced LPFG with a LC layer, on the powered state the attenuation band could be offset from the attenuation band measured in the unpowered state by almost130 nm. When the arc-induced LPFG was coated with the LC, the depth of the attenuation band could be efficiently controlled by applying an external E-field. Additionally, all experimental results obtained in this work were supported by the theoretical analysis based on a model developed with Optigrating v.4.2 software.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
290--295
Opis fizyczny
Bibliogr. 25 poz., il., rys., wykr.
Twórcy
autor
- Faculty of Physics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland, czapla@if.wp.edu.pl
autor
- Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 Rue Saint-Jean-Bosco, Gatineau, QC J8X 3X7, Canada
autor
- Faculty of Physics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
- Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 Rue Saint-Jean-Bosco, Gatineau, QC J8X 3X7, Canada
autor
- Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
- Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
- [1] O. Frazão, G. Rego, M. Lima, A. Teixeira, F.M. Araújo, P. André, J.F. Rocha, H.M. Salgado, EDFA gain flattening using long-period fiber gratings based on the electric arc technique, Proc. Lond. Commun. Symp. 2001 (2001) 55–57.
- [2] X.J. Gu, Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings, Opt. Lett. 23 (7) (1998) 509–510.
- [3] X. Shu, L. Zhang, I. Bennion, Sensitivity characteristics of long-period fiber gratings, J. Lightwave Technol. 20 (2) (2002) 255–266.
- [4] G. Rego, A review of refractometric sensors based on long period fibre gratings, Sci. World J. 2013 (2013) 913418.
- [5] M. Szeląg, P. Lesiak, D. Budaszewski, M. Chychłowski, T.R. Woliński, Investigation of strain induced effect on linear shape fiber Bragg grating embedded in composite material, Photonic Lett. Poland 8 (3) (2016) 88–90.
- [6] E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, W.J. Bock, Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings, Biosens. Bioelectron. 67 (2015) 93–99.
- [7] M. Konstantaki, A. Klini, D. Anglos, S. Pissadakis, An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating, Opt. Express 20 (8) (2012) 8472–8484.
- [8] I. Del Villar, Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point, Opt. Express 23 (7) (2015) 8389–8398.
- [9] S.M. Tripathi, W.J. Bock, A. Kumar, P. Mikulic, Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings, Opt. Lett. 38 (10) (2013) 1666–1668.
- [10] M. Smietana, W.J. Bock, P. Mikulic, J. Chen, Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber, J. Lightwave Technol. 30 (8) (2012) 1080–1084.
- [11] I.C. Khoo, S.T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific Publ., 1997.
- [12] J. Li, S.-T. Wu, Extended Cauchy equations for the refractive indices of liquid crystals, J. Appl. Phys. 95 (3) (2004) 896–901.
- [13] D. Budaszewski, A.K. Srivastava, A.M.W. Tam, T.R. Woliński, V.G. Chigrinov, H.-S. Kwok, Photoaligned ferroelectric liquid crystals in microchannels, Opt. Lett. 39 (16) (2014) 4679–4682.
- [14] M.S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, T.R. Woliński, Escaped radial and planar liquid crystal orientation inside capillaries, Mol. Cryst. Liq. Cryst. 553 (1) (2012) 127–132.
- [15] M.S. Chychłowskia, O. Yaroshchuk, R. Kravchuk, T.R. Woliński, Liquid crystal alignment in cylindrical microcapillaries, Opto-Electron. Rev. 20 (2012) 47–52.
- [16] O. Duhem, J.F. Henniont, M. Warenghem, M. Douay, L. Rivoallan, Long-period fiber gratings modulation by liquid crystal cladding, Proc. 6th IEEE Conf. on Telecommunications (1998) 195–196.
- [17] S. Yin, K.-W. Chung, X. Zhu, A novel all-optic tunable long-period grating using a unique double-cladding layer, Opt. Commun. 196 (1–6) (2001) 181–186.
- [18] H.R. Kim, Y. Kim, Y. Jeong, S. Baek, Y.W. Lee, B. Lee, S.D. Lee, Suppression of the cladding mode interference in cascade long-period fiber gratings with liquid crystal cladding, Mol. Cryst. Liq. Cryst. 413 (2004) 399–406.
- [19] A. Czapla, T.R. Woliński, W.J. Bock, E. Nowinowski-Kruszelnicki, R. Dąbrowski, J. Wójcik, Longperiod fiber gratings with low-birefringence liquid crystal, Mol. Cryst. Liq. Cryst. 502 (1) (2009) 65–76.
- [20] H.X. Luo Li, S. Li, J. Chen, Analysis of temperature-dependent mode transition in nanosized liquid crystal layer-coated long period gratings, Appl. Opt. 48 (25) (2009) F95–F100.
- [21] A. Czapla, W.J. Bock, T.R. Woliński, R. Dabrowski, E. Nowinowski-Kruszelnicki, Tuning cladding mode propagation mechanisms in liquid crystal long-period fiber gratings, J. Lightwave Technol. 30 (8) (2012) 1201–1207.
- [22] A. Czapla, W.J. Bock, T.R. Wolinski, Designing sensing properties of the long-period fiber grating coated with the liquid crystal layers, Proc. SPIE 8421 (2012) 84215H.
- [23] A. Czapla, W.J. Bock, T.R. Woliński, P. Mikulic, E. Nowinowski-Kruszelnicki, R. Dąbrowski, Improving the electric field sensing capabilities of the long-period fiber grating coated with a liquid crystal layer, Opt. Express 24 (5) (2016) 5662–5673.
- [24] M. Śmietana, W.J. Bock, P. Mikulic, J. Chen, Increasing sensitivity of arc-induced long-period gratings − pushing the fabrication technique toward its limits, Meas. Sci. Technol. 22 (2011) 015201.
- [25] J.G. Delly, The Michel-Lévy interference color chart. The microscopist’s magical color key, (Modern Microscopy, 2003 http://www.modernmicroscopy.com/main.asp?article=15.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-44709302-60a3-493f-a122-3bde8c30c588